skip to main content
US FlagAn official website of the United States government
dot gov icon
Official websites use .gov
A .gov website belongs to an official government organization in the United States.
https lock icon
Secure .gov websites use HTTPS
A lock ( lock ) or https:// means you've safely connected to the .gov website. Share sensitive information only on official, secure websites.


Title: Microbial communities from weathered outcrops of a sulfide‐rich ultramafic intrusion, and implications for mine waste management
Abstract The Duluth Complex (DC) contains sulfide‐rich magmatic intrusions that represent one of the largest known economic deposits of copper, nickel, and platinum group elements. Previous work showed that microbial communities associated with experimentally‐weathered DC waste rock and tailings were dominated by uncultivated taxa and organisms not typically associated with mine waste. However, those experiments were designed for kinetic testing and do not necessarily represent the conditions expected for long‐term environmental weathering. We used 16S rRNA gene methods to characterize the microbial communities present on the surfaces of naturally‐weathered and historically disturbed outcrops of DC material. Rock surfaces were dominated by diverse unculturedKtedonobacteria,Acetobacteria, andActinobacteria, with abundant algae and other phototrophs. These communities were distinct from microbial assemblages from experimentally‐weathered DC rocks, suggesting different energy and nutrient resources in environmental samples. Sulfide mineral incubations performed with and without algae showed that photosynthetic microorganisms could have an inhibitory effect on autotrophic populations, resulting in slightly lower sulfate release and differences in dominant microorganisms. The microbial assemblages from these weathered outcrops show how communities develop during weathering of sulfide‐rich DC rocks and represent baseline data that could evaluate the effectiveness of future reclamation of waste produced by large‐scale mining operations.  more » « less
Award ID(s):
2153786
PAR ID:
10488186
Author(s) / Creator(s):
; ; ; ; ;
Publisher / Repository:
Wiley
Date Published:
Journal Name:
Environmental Microbiology
Volume:
25
Issue:
12
ISSN:
1462-2912
Page Range / eLocation ID:
3512 to 3526
Format(s):
Medium: X
Sponsoring Org:
National Science Foundation
More Like this
  1. Spear, John R (Ed.)
    ABSTRACT Microorganisms are important catalysts for the oxidation of reduced inorganic sulfur compounds. One environmentally important source of reduced sulfur is metal sulfide minerals that occur in economic mineral deposits and mine waste. Previous research found thatSulfuriferulaspp. were abundant and active in long-term weathering experiments with simulated waste rock and tailings from the Duluth Complex, Northern Minnesota. We, therefore, isolated several strains ofSulfuriferulaspp. from these long-term experiments and characterized their metabolic and genomic properties to provide insight into microbe-mineral interactions and the microbial biogeochemistry in these and other moderately acidic to circumneutral environments. TheSulfuriferulastrains are all obligate chemolithoautotrophs capable of oxidizing inorganic sulfur compounds and ferrous iron. The strains grew over different pH ranges, but all grew between pH 4.5 and 7, matching the weathering conditions of the Duluth Complex rocks. All strains grew on the iron-sulfide mineral pyrrhotite (Fe1 −xS, 0 <x< 0.125) as the sole energy source, as well as hydrogen sulfide and thiosulfate, which are products of sulfide mineral breakdown. Despite their metabolic similarities, each strain encodes a distinct pathway for the oxidation of reduced inorganic sulfur compounds as well as differences in nitrogen metabolism that reveal diverse genomic capabilities among the group. Our results show thatSulfuriferulaspp. are primary producers that likely play a role in sulfide mineral breakdown in moderately acidic to circumneutral mine waste, and the metabolic diversity within the genus may explain their success in sulfide mineral-rich and other sulfidic environments. IMPORTANCEMetal sulfide minerals, such as pyrite and pyrrhotite, are one of the main sources of reduced sulfur in the global sulfur cycle. The chemolithotrophic microorganisms that break down these minerals in natural and engineered settings are catalysts for biogeochemical sulfur cycling and have important applications in biotechnological processes such as biomining and bioremediation.Sulfuriferulais a recently described genus of sulfur-oxidizing bacteria that are abundant primary producers in diverse terrestrial environments, including waste rock and tailings from metal mining operations. In this study, we explored the genomic and metabolic properties of new isolates from this genus, and the implications for their ecophysiology and biotechnological potential in ore and waste from economic mineral deposits. 
    more » « less
  2. Bacterial, fungal, and algal communities that colonize aquatic systems on glacial ice surfaces mediate biogeochemical reactions that alter meltwater composition and affect meltwater production and storage. In this study, we sought to improve understanding of microbial communities inhabiting the shallow aquifer that forms seasonally within the ice surface of a glacier’s ablation zone (i.e., the weathering crust aquifer). Using a metagenomic approach, we compared gene contents of microbial assemblages in the weathering crust aquifer (WCA) of the Matanuska Glacier (Alaska, USA) to those recovered from supraglacial features and englacial ice. High abundances of Pseudomonadota, Cyanobacteriota, Actinomycetota, and Bacteroidota were observed across all samples, while taxa in class Gammaproteobacteria were found at significantly higher abundances in the weathering crust aquifer. The weathering crust aquifer samples also contained higher abundances of Dothideomycetes and Microbotryomyetes; fungal classes commonly observed in snow and other icy ecosystems. Phylogenetic analysis of 18S rRNA andrbcLgene sequences indicated high abundances of algae in the WCA that are closely related (> 98% and > 93% identity, respectively) to taxa ofAncylonema(Streptophyta) andOchromonas(Ochrophyta) reported from glacial ice surfaces in Svalbard and Antarctic sea ice. Many functional gene categories (e.g., homeostasis, cellular regulation, and stress responses) were enriched in samples from the weathering crust aquifer compared to those from proximal englacial and supraglacial habitats, providing evidence for ecological specialization in the communities. The identification of phagotrophic phytoflagellate taxa and genes involved in mixotrophy implies that combined phototrophic and heterotrophic production may assist with persistence in the low light, low energy, and ephemeral conditions of the weathering crust environment. The compositional and functional differences we have documented indicate distinct microbial distributions and functional processes occur in the weathering crust aquifer environment, and we discuss how deciphering these nuances is essential for developing a more complete understanding of ecosystem biogeochemistry in supraglacial hydrological systems. 
    more » « less
  3. Abstract Rock fracture surfaces in the crust are essential habitat for microorganisms. Fracture‐groundwater interfaces provide physical substrates for biofilm growth and are sources of carbon, nutrients, and electron donors and acceptors. To better understand geochemical processes impacting fracture surfaces and the subsurface microbiome, we identified fractures in archived rock cores from the Soudan formation, which is known to host saline groundwaters and isolated microbial communities dependent on rock‐water interactions. Cores with open fractures were thin sectioned and studied via electron microprobe and synchrotron X‐ray fluorescence microprobe. Most fracture surfaces had mineralogy distinct from that of the bulk rock. Chlorite minerals were abundant on fracture surfaces and had elemental compositions suggesting deposition during late‐stage hydrothermal alteration. Fracture‐lining chlorites likely limit access to iron oxide and sulfide minerals that are active in subsurface biogeochemical cycles. Calcium‐rich rinds were also observed along fracture edges. These rinds were too thin and poorly ordered to be identified via light microscopy or X‐ray diffraction; however, Ca K‐edge micro‐X‐ray absorption near‐edge structure spectroscopy identified them as carbonates, minerals not observed in the bulk rock. Thermodynamic modeling shows that carbonate precipitation is largely unfavorable in Soudan groundwaters, indicating that fracture edge conditions differed from those in modern water samples. Because of the low carbon concentrations in Soudan groundwaters, carbonate rinds likely play an important role in subsurface carbon cycling and may mark fracture surfaces that once hosted biofilms. Overall, this study suggests that fracture alteration can both play an active role in and suppress rock‐water interactions essential to subsurface life. 
    more » « less
  4. Abstract. Carbonate rocks are highly reactive and can have higher ratios of chemical weathering to total denudation relative to most other rock types. Their chemical reactivity affects the first-order morphology of carbonate-dominated landscapes and their climate sensitivity to weathering.However, there have been few efforts to quantify the partitioning ofdenudation into mechanical erosion and chemical weathering in carbonatelandscapes such that their sensitivity to changing climatic and tectonicconditions remains elusive. Here, we compile bedrock and catchment-averagedcosmogenic calcite–36Cl denudation rates and compare them to weathering rates derived from stream water chemistry from the same regions. Local bedrock denudation and weathering rates are comparable, ∼20–40 mm ka−1, whereas catchment-averaged denudation rates are ∼2.7 times higher. The discrepancy between bedrock and catchment-averaged denudation is 5 times lower compared to silicate-rich rocks, illustrating that elevated weathering rates make denudation more spatially uniform in carbonate-dominated landscapes. Catchment-averaged denudation rates correlate well with topographic relief and hillslope gradients, and moderate correlations with runoff can be explained by concurrent increases in weathering rates. Comparing denudation rates with weathering rates shows that mechanical erosion processes contribute ∼50 % of denudation in southern France and ∼70 % in Greece and Israel. Our results indicate that the partitioning between largely slope-independent chemical weathering and slope-dependent mechanical erosion varies based on climate and tectonics and impacts the landscape morphology. This leads us to propose a conceptual model whereby in humid, slowly uplifting regions, carbonates are associated with low-lying, flat topography because slope-independent chemical weathering dominates denudation. In contrast, in arid climates with rapid rock uplift rates, carbonate rocks form steep mountains that facilitate rapid, slope-dependent mechanical erosion required to compensate for inefficient chemical weathering and runoff loss to groundwater systems. This result suggests that carbonates represent an end member for interactions between climate, tectonics, and lithology. 
    more » « less
  5. Examination of algal assemblages from aerial environments around the globe, especially those from pseudoaerial habitats found on moistened rocks underneath waterfalls or around springs and seeps, reveals the presence of unique diatom floras. Yet, diatom assemblages from northern regions like Iceland remain understudied, especially those from the volcanic rock outcrops and boulders that create euaerial habitats where biota receive moisture from the atmosphere or the rock itself. During the summers of 2013 and 2015, we examined the biodiversity of mostly euaerial, but also pseudoaerial, diatom assemblages collected from volcanic rock outcrops or large boulders on the landscape from southwestern Iceland. We used light and scanning electron microscopy to document the biodiversity of common, smaller, new, or interesting specimens, such as Humidophila and Eunotia. We describe one new Humidophila species, H. eldfjallii sp. nov., with triundulate valve margins and include information on another unidentified taxon, Humidophila sp. 1, naviculoid in shape with tapering to rounded ends, continuous striae through the length of the valve, and a circular central area. We formally transfer Diadesmis contenta var. biceps to Humidophila biceps. To correct the nomenclature, we recognized Humidophila parallela at the species level. Relative abundance estimates of diatom populations provided further characterization of the assemblages on these habitats. Humidophila taxa, especially H. gallica dominated the diverse diatom flora. We discuss adaptations for survival with access to mostly atmospheric water. The diatom flora described here adds to the flora for this region, highlights the diversity of diatom assemblages that can inhabit euaerial environments, and provides evidence of adaptive success of diatoms in extreme habitats with limited moisture and nutrients. 
    more » « less