Small Unmanned Aerial Systems (sUAS) must meet rigorous safety standards when deployed in high-stress emergency response scenarios; however many reported accidents have involved humans in the loop. In this paper, we, therefore, present the HiFuzz testing framework, which uses fuzz testing to identify system vulnerabilities associated with human interactions. HiFuzz includes three distinct levels that progress from a low-cost, limited-fidelity, large-scale, no-hazard environment, using fully simulated Proxy Human Agents, via an intermediate level, where proxy humans are replaced with real humans, to a high-stakes, high-cost, real-world environment. Through applying HiFuzz to an autonomous multi-sUAS system-under-test, we show that each test level serves a unique purpose in revealing vulnerabilities and making the system more robust with respect to human mistakes. While HiFuzz is designed for testing sUAS system, we further show that it is applicable across a broader range of Cyber-Physical Systems. 
                        more » 
                        « less   
                    
                            
                            HIFuzz: Human Interaction Fuzzing for Small Unmanned Aerial Vehicles
                        
                    
    
            Small Unmanned Aerial Systems (sUAS) must meet rigorous safety standards when deployed in high-stress emergency response scenarios; however many reported accidents have involved humans in the loop. In this paper, we, therefore, present the HiFuzz testing framework, which uses fuzz testing to identify system vulnerabilities associated with human interactions. HiFuzz includes three distinct levels that progress from a low-cost, limited-fidelity, large-scale, no-hazard environment, using fully simulated Proxy Human Agents, via an intermediate level, where proxy humans are replaced with real humans, to a high-stakes, high-cost, real-world environment. Through applying HiFuzz to an autonomous multi-sUAS system-under-test, we show that each test level serves a unique purpose in revealing vulnerabilities and making the system more robust with respect to human mistakes. While HiFuzz is designed for testing sUAS systems, we further discuss its potential for use in other Cyber-Physical Systems. 
        more » 
        « less   
        
    
                            - Award ID(s):
- 1909688
- PAR ID:
- 10548899
- Publisher / Repository:
- ACM
- Date Published:
- ISBN:
- 9798400703300
- Page Range / eLocation ID:
- 1 to 14
- Format(s):
- Medium: X
- Location:
- Honolulu HI USA
- Sponsoring Org:
- National Science Foundation
More Like this
- 
            
- 
            Flight-time failures of small Uncrewed Aerial Systems (sUAS) can have a severe impact on people or the environment. Therefore, sUAS applications must be thoroughly evaluated and tested to ensure their adherence to specified requirements, and safe behavior under real-world conditions, such as poor weather, wireless interference, and satellite failure. However, current simulation environments for autonomous vehicles, including sUAS, provide limited support for validating their behavior in diverse environmental contexts and moreover, lack a test harness to facilitate structured testing based on system-level requirements. We address these shortcomings by eliciting and specifying requirements for an sUAS testing and simulation platform, and developing and deploying it. The constructed platform, DroneWorld (\DW), allows sUAS developers to define the operating context, configure multi-sUAS mission requirements, specify safety properties, and deploy their own custom sUAS applications in a high-fidelity 3D environment. The DroneWorld Monitoring system collects runtime data from sUAS and the environment, analyzes compliance with safety properties, and captures violations. We report on two case studies in which we used our platform prior to real-world sUAS deployments, in order to evaluate sUAS mission behavior in various environmental contexts. Furthermore, we conducted a study with developers and found that DroneWorld simplifies the process of specifying requirements-driven test scenarios and analyzing acceptance test results.more » « less
- 
            Rapid advancements in Artificial Intelligence have shifted the focus from traditional human-directed robots to fully autonomous ones that do not require explicit human control. These are commonly referred to as Human-on-the-Loop (HotL) systems. Transparency of HotL systems necessitates clear explanations of autonomous behavior so that humans are aware of what is happening in the environment and can understand why robots behave in a certain way. However, in complex multi-robot environments, especially those in which the robots are autonomous and mobile, humans may struggle to maintain situational awareness. Presenting humans with rich explanations of autonomous behavior tends to overload them with lots of information and negatively affect their understanding of the situation. Therefore, explaining the autonomous behavior of multiple robots creates a design tension that demands careful investigation. This paper examines the User Interface (UI) design trade-offs associated with providing timely and detailed explanations of autonomous behavior for swarms of small Unmanned Aerial Systems (sUAS) or drones. We analyze the impact of UI design choices on human awareness of the situation. We conducted multiple user studies with both inexperienced and expert sUAS operators to present our design solution and initial guidelines for designing the HotL multi-sUAS interface.more » « less
- 
            null (Ed.)With the rise of new AI technologies, autonomous systems are moving towards a paradigm in which increasing levels of responsibility are shifted from the human to the system, creating a transition from human-in-the-loop systems to human-on-the-loop (HoTL) systems. This has a significant impact on the safety analysis of such systems, as new types of errors occurring at the boundaries of human-machine interactions need to be taken into consideration. Traditional safety analysis typically focuses on system-level hazards with little focus on user-related or user-induced hazards that can cause critical system failures. To address this issue, we construct domain-level safety analysis assets for sUAS (small unmanned aerial systems) applications and describe the process we followed to explicitly, and systematically identify Human Interaction Points (HiPs), Hazard Factors and Mitigations from system hazards. We evaluate our approach by first investigating the extent to which recent sUAS incidents are covered by our hazard trees, and second by performing a study with six domain experts using our hazard trees to identify and document hazards for sUAS usage scenarios. Our study showed that our hazard trees provided effective coverage for a wide variety of sUAS application scenarios and were useful for stimulating safety thinking and helping users to identify and potentially mitigate human-interaction hazards.more » « less
- 
            In high-level Autonomous Driving (AD) systems, behavioral planning is in charge of making high-level driving decisions such as cruising and stopping, and thus highly securitycritical. In this work, we perform the first systematic study of semantic security vulnerabilities specific to overly-conservative AD behavioral planning behaviors, i.e., those that can cause failed or significantly-degraded mission performance, which can be critical for AD services such as robo-taxi/delivery. We call them semantic Denial-of-Service (DoS) vulnerabilities, which we envision to be most generally exposed in practical AD systems due to the tendency for conservativeness to avoid safety incidents. To achieve high practicality and realism, we assume that the attacker can only introduce seemingly-benign external physical objects to the driving environment, e.g., off-road dumped cardboard boxes. To systematically discover such vulnerabilities, we design PlanFuzz, a novel dynamic testing approach that addresses various problem-specific design challenges. Specifically, we propose and identify planning invariants as novel testing oracles, and design new input generation to systematically enforce problemspecific constraints for attacker-introduced physical objects. We also design a novel behavioral planning vulnerability distance metric to effectively guide the discovery. We evaluate PlanFuzz on 3 planning implementations from practical open-source AD systems, and find that it can effectively discover 9 previouslyunknown semantic DoS vulnerabilities without false positives. We find all our new designs necessary, as without each design, statistically significant performance drops are generally observed. We further perform exploitation case studies using simulation and real-vehicle traces. We discuss root causes and potential fixes.more » « less
 An official website of the United States government
An official website of the United States government 
				
			 
					 
					
 
                                    