We do not understand how neural nodes operate and coordinate within the recurrent action-perception loops that characterize naturalistic self-environment interactions. Here, we record single-unit spiking activity and local field potentials (LFPs) simultaneously from the dorsomedial superior temporal area (MSTd), parietal area 7a, and dorsolateral prefrontal cortex (dlPFC) as monkeys navigate in virtual reality to ‘catch fireflies’. This task requires animals to actively sample from a closed-loop virtual environment while concurrently computing continuous latent variables: (i) the distance and angle travelled (i.e., path integration) and (ii) the distance and angle to a memorized firefly location (i.e., a hidden spatial goal). We observed a patterned mixed selectivity, with the prefrontal cortex most prominently coding for latent variables, parietal cortex coding for sensorimotor variables, and MSTd most often coding for eye movements. However, even the traditionally considered sensory area (i.e., MSTd) tracked latent variables, demonstrating path integration and vector coding of hidden spatial goals. Further, global encoding profiles and unit-to-unit coupling (i.e., noise correlations) suggested a functional subnetwork composed by MSTd and dlPFC, and not between these and 7a, as anatomy would suggest. We show that the greater the unit-to-unit coupling between MSTd and dlPFC, the more the animals’ gaze position was indicative of the ongoing location of the hidden spatial goal. We suggest this MSTd-dlPFC subnetwork reflects the monkeys’ natural and adaptive task strategy wherein they continuously gaze toward the location of the (invisible) target. Together, these results highlight the distributed nature of neural coding during closed action-perception loops and suggest that fine-grain functional subnetworks may be dynamically established to subserve (embodied) task strategies.
more »
« less
Sensory input to cortex encoded on low-dimensional periphery-correlated subspaces
Abstract As information about the world is conveyed from the sensory periphery to central neural circuits, it mixes with complex ongoing cortical activity. How do neural populations keep track of sensory signals, separating them from noisy ongoing activity? Here, we show that sensory signals are encoded more reliably in certain low-dimensional subspaces. These coding subspaces are defined by correlations between neural activity in the primary sensory cortex and upstream sensory brain regions; the most correlated dimensions were best for decoding. We analytically show that these correlation-based coding subspaces improve, reaching optimal limits (without an ideal observer), as noise correlations between cortex and upstream regions are reduced. We show that this principle generalizes across diverse sensory stimuli in the olfactory system and the visual system of awake mice. Our results demonstrate an algorithm the cortex may use to multiplex different functions, processing sensory input in low-dimensional subspaces separate from other ongoing functions.
more »
« less
- PAR ID:
- 10490402
- Editor(s):
- Klann, Eric
- Publisher / Repository:
- Oxford University Press
- Date Published:
- Journal Name:
- PNAS Nexus
- Volume:
- 3
- Issue:
- 1
- ISSN:
- 2752-6542
- Format(s):
- Medium: X
- Sponsoring Org:
- National Science Foundation
More Like this
-
-
null (Ed.)Neural codes for sensory inputs have been hypothesized to reside in a broader space defined by ongoing patterns of spontaneous activity. To understand the structure of this spontaneous activity in the olfactory system, we performed high-density recordings of neural populations in the main olfactory bulb of awake mice. We observed changes in pairwise correlations of spontaneous activity between mitral and tufted (M/T) cells when animals were running, which resulted in an increase in the entropy of the population. Surprisingly, pairwise maximum entropy models that described the population activity using only assumptions about the firing rates and correlations of neurons were better at predicting the global structure of activity when animals were stationary as compared to when they were running, implying that higher order (3rd, 4th order) interactions governed population activity during locomotion. Taken together, we found that locomotion alters the functional interactions that shape spontaneous population activity at the earliest stages of olfactory processing, one synapse away from the sensory receptors in the nasal epithelium. These data suggest that the coding space available for sensory representations responds adaptively to the animal’s behavioral state. NEW & NOTEWORTHY The organization and structure of spontaneous population activity in the olfactory system places constraints of how odor information is represented. Using high-density electrophysiological recordings of mitral and tufted cells, we found that running increases the dimensionality of spontaneous activity, implicating higher order interactions among neurons during locomotion. Behavior, thus, flexibly alters neuronal activity at the earliest stages of sensory processing.more » « less
-
According to the efficient coding hypothesis, neural populations encode information optimally when representations are high-dimensional and uncorrelated. However, such codes may carry a cost in terms of generalization and robustness. Past empirical studies of early visual cortex (V1) in rodents have suggested that this tradeoff indeed constrains sensory representations. However, it remains unclear whether these insights generalize across the hierarchy of the human visual system, and particularly to object representations in high-level occipitotemporal cortex (OTC). To gain new empirical clarity, here we develop a family of object recognition models with parametrically varying dropout proportion , which induces systematically varying dimensionality of internal responses (while controlling all other inductive biases). We find that increasing dropout produces an increasingly smooth, low-dimensional representational space. Optimal robustness to lesioning is observed at around 70% dropout, after which both accuracy and robustness decline. Representational comparison to large-scale 7T fMRI data from occipitotemporal cortex in the Natural Scenes Dataset reveals that this optimal degree of dropout is also associated with maximal emergent neural predictivity. Finally, using new techniques for achieving denoised estimates of the eigenspectrum of human fMRI responses, we compare the rate of eigenspectrum decay between model and brain feature spaces. We observe that the match between model and brain representations is associated with a common balance between efficiency and robustness in the representational space. These results suggest that varying dropout may reveal an optimal point of balance between the efficiency of high-dimensional codes and the robustness of low dimensional codes in hierarchical vision systems.more » « less
-
Perceptual judgments of the environment emerge from the concerted activity of neural populations in decision-making areas downstream of the sensory cortex. When the sensory input is ambiguous, perceptual judgments can be biased by prior expectations shaped by environmental regularities. These effects are examples of Bayesian inference, a reasoning method in which prior knowledge is leveraged to optimize uncertain decisions. However, it is not known how decision-making circuits combine sensory signals and prior expectations to form a perceptual decision. Here, we study neural population activity in the prefrontal cortex of macaque monkeys trained to report perceptual judgments of ambiguous visual stimuli under two different stimulus distributions. We isolate the component of the neural population response that represents the formation of the perceptual decision (the decision variable, DV), and find that its dynamical evolution reflects the integration of sensory signals and prior expectations. Prior expectations impact the DV’s trajectory both before and during stimulus presentation such that DV trajectories with a smaller dynamic range result in more biased and less sensitive perceptual decisions. We show that these results resemble a specific variant of Bayesian inference known as approximate hierarchical inference. Our findings expand our understanding of the mechanisms by which prefrontal circuits can execute Bayesian inference.more » « less
-
Abstract The auditory system comprises multiple subcortical brain structures that process and refine incoming acoustic signals along the primary auditory pathway. Due to technical limitations of imaging small structures deep inside the brain, most of our knowledge of the subcortical auditory system is based on research in animal models using invasive methodologies. Advances in ultrahigh-field functional magnetic resonance imaging (fMRI) acquisition have enabled novel noninvasive investigations of the human auditory subcortex, including fundamental features of auditory representation such as tonotopy and periodotopy. However, functional connectivity across subcortical networks is still underexplored in humans, with ongoing development of related methods. Traditionally, functional connectivity is estimated from fMRI data with full correlation matrices. However, partial correlations reveal the relationship between two regions after removing the effects of all other regions, reflecting more direct connectivity. Partial correlation analysis is particularly promising in the ascending auditory system, where sensory information is passed in an obligatory manner, from nucleus to nucleus up the primary auditory pathway, providing redundant but also increasingly abstract representations of auditory stimuli. While most existing methods for learning conditional dependency structures based on partial correlations assume independently and identically Gaussian distributed data, fMRI data exhibit significant deviations from Gaussianity as well as high-temporal autocorrelation. In this paper, we developed an autoregressive matrix-Gaussian copula graphical model (ARMGCGM) approach to estimate the partial correlations and thereby infer the functional connectivity patterns within the auditory system while appropriately accounting for autocorrelations between successive fMRI scans. Our results show strong positive partial correlations between successive structures in the primary auditory pathway on each side (left and right), including between auditory midbrain and thalamus, and between primary and associative auditory cortex. These results are highly stable when splitting the data in halves according to the acquisition schemes and computing partial correlations separately for each half of the data, as well as across cross-validation folds. In contrast, full correlation-based analysis identified a rich network of interconnectivity that was not specific to adjacent nodes along the pathway. Overall, our results demonstrate that unique functional connectivity patterns along the auditory pathway are recoverable using novel connectivity approaches and that our connectivity methods are reliable across multiple acquisitions.more » « less
An official website of the United States government

