The shape of the Fermi surface, and the cyclotron effective mass of the kagome magnet GdV6Sn6 charge carriers are investigated using de Haas van Alphen (dHvA) oscillations measurements and electronic band structure calculations. The temperature and angle-dependent torque magnetometry measurements revealed at least nine different frequencies ranging from ~10 T up to ~9000 T. These frequencies correspond to extremal areas of the Fermi surface ranging from ~0.2 % up to 50% of the first Brillouin zone, qualitatively consistent with the electronic band structure calculations. The angle dependent dHvA oscillation frequencies indicate that the smaller pockets of the Fermi surface have almost 3D character whereas the bigger pockets of the Fermi surface are mostly two-dimensional. We also find evidence of the presence of light (0.28(1) m0) as well as heavy (2.37(18) m0) charge carriers through the analysis of the temperature dependence of dominant frequencies. The comparison of the observed frequencies with the electronic band structure calculations indicates that the heavy masses correspond to saddle-point-like features of electronic band structure at the M point. The observation of the multiple low frequencies and the calculated contributions from various bands to such low frequencies prevent the estimation of topological nature of bands containing lighter fermions. In conclusion, our work reveals the features of a Fermi surface containing enhanced mass fermions originated from saddle points in the electronic band structure at the M point, which is inherent to kagome lattices.
more »
« less
Quantum Oscillations Evidence for Topological Bands in Kagome Metal ScV6Sn6
Metals with kagome lattice provide bulk materials to host both the flat-band and Dirac electronic dispersions. A new family of kagome metals was recently discovered in AV6Sn6. The Dirac electronic structures of this material need strong experimental evidence. In the manuscript, we investigate this problem by resolving the quantum oscillations in both electrical transport and magnetization in ScV6Sn6. The revealed orbits are consistent with the electronic band structure models. Furthermore, the Berry phase of a dominating orbit is revealed to be around π, providing direct evidence for the topological band structure, which is consistent with calculations. Our results demonstrate a rich physics and shed light on the correlated topological ground state of this kagome metal.
more »
« less
- PAR ID:
- 10491521
- Publisher / Repository:
- IOP Publishing
- Date Published:
- Journal Name:
- Journal of Physics: Condensed Matter
- ISSN:
- 0953-8984
- Format(s):
- Medium: X
- Sponsoring Org:
- National Science Foundation
More Like this
-
-
Abstract Interplay of magnetism and electronic band topology in unconventional magnets enables the creation and fine control of novel electronic phenomena. In this work, we use scanning tunneling microscopy and spectroscopy to study thin films of a prototypical kagome magnet Fe 3 Sn 2 . Our experiments reveal an unusually large number of densely-spaced spectroscopic features straddling the Fermi level. These are consistent with signatures of low-energy Weyl fermions and associated topological Fermi arc surface states predicted by theory. By measuring their response as a function of magnetic field, we discover a pronounced evolution in energy tied to the magnetization direction. Electron scattering and interference imaging further demonstrates the tunable nature of a subset of related electronic states. Our experiments provide a direct visualization of how in-situ spin reorientation drives changes in the electronic density of states of the Weyl fermion band structure. Combined with previous reports of massive Dirac fermions, flat bands, and electronic nematicity, our work establishes Fe 3 Sn 2 as an interesting platform that harbors an extraordinarily wide array of topological and correlated electron phenomena.more » « less
-
NA (Ed.)This work presents a detailed study of the electronic structure, phonon dispersion, Z2 invariant calculation, and Fermi surface of the newly discovered kagome superconductor CsV3Sb5, using density functional theory. The phonon dispersion in the pristine state reveals two negative modes at the M and L points of the Brillouin zone, indicating lattice instability. CsV3Sb5 transitions into a structurally stable 2 × 2 × 1 charge density wave (CDW) phase, confirmed by positive phonon modes. The electronic band structure shows several Dirac points near the Fermi level, with a narrow gap opening due to spin–orbit coupling (SOC), although the effect of SOC on other bands is minimal. In the pristine phase, this material exhibits a quasi-2D cylindrical Fermi surface, which undergoes reconstruction in the CDW phase. We calculated quantum oscillation frequencies using Onsager’s relation, finding good agreement with experimental results in the CDW phase. To explore the topological properties of CsV3Sb5, we computed the Z2 invariant in both pristine and CDW phases, resulting in a value of (ν0; ν1ν2ν3) = (1; 000), suggesting the strong topological nature of this material. Our detailed analysis of phonon dispersion, electronic bands, Fermi surface mapping, and Z2 invariant provides insights into the topological properties, CDW order, and unconventional superconductivity in AV3Sb5 (A = K, Rb, and Cs).more » « less
-
Epitaxial growth and magnetic properties of kagome metal FeSn/elemental ferromagnet heterostructuresBinary kagome compounds TmXn (T = Mn, Fe, Co; X = Sn, Ge; m:n = 3:1, 3:2, 1:1) have garnered recent interest owing to the presence of both topological band crossings and flatbands arising from the geometry of the metal-site kagome lattice. To exploit these electronic features for potential applications in spintronics, the growth of high-quality heterostructures is required. Here, we report the synthesis of Fe/FeSn and Co/FeSn bilayers on Al2O3 substrates using molecular beam epitaxy to realize heterointerfaces between elemental ferromagnetic metals and antiferromagnetic kagome metals. Structural characterization using high-resolution x-ray diffraction, reflection high-energy electron diffraction, and electron microscopy reveals that the FeSn films are flat and epitaxial. Rutherford backscattering spectroscopy was used to confirm the stoichiometric window where the FeSn phase is stabilized, while transport and magnetometry measurements were conducted to verify metallicity and magnetic ordering in the films. Exchange bias was observed, confirming the presence of antiferromagnetic order in the FeSn layers, paving the way for future studies of magnetism in kagome heterostructures and potential integration of these materials into devices.more » « less
-
The past decade has witnessed the emergence of a new frontier in condensed matter physics: topological materials with an electronic band structure belonging to a different topological class from that of ordinary insulators and metals. This non-trivial band topology gives rise to robust, spin-polarized electronic states with linear energy–momentum dispersion at the edge or surface of the materials. For topological materials to be useful in electronic devices, precise control and accurate detection of the topological states must be achieved in nanostructures, which can enhance the topological states because of their large surface-to-volume ratios. In this Review, we discuss notable synthesis and electron transport results of topological nanomaterials, from topological insulator nanoribbons and plates to topological crystalline insulator nanowires and Weyl and Dirac semimetal nanobelts. We also survey superconductivity in topological nanowires, a nanostructure platform that might enable the controlled creation of Majorana bound states for robust quantum computations. Two material systems that can host Majorana bound states are compared: spin–orbit coupled semiconducting nanowires and topological insulating nanowires, a focus of this Review. Finally, we consider the materials and measurement challenges that must be overcome before topological nanomaterials can be used in next-generation electronic devices.more » « less
An official website of the United States government

