skip to main content
US FlagAn official website of the United States government
dot gov icon
Official websites use .gov
A .gov website belongs to an official government organization in the United States.
https lock icon
Secure .gov websites use HTTPS
A lock ( lock ) or https:// means you've safely connected to the .gov website. Share sensitive information only on official, secure websites.


Title: A run-time verification method with consideration of uncertainties for cyber–physical systems
Since many Cyber–Physical Systems (CPS) interact with the real world, they are safety- or mission- critical. Temporal specification languages like STL (Signal Temporal Logic) have been developed to capture the properties that built CPS must meet. However, the existing temporal logics/languages do not provide a natural way to express the tolerance with which the timing properties must be met. As a consequence of this, the specified properties may be vague, the ensuing CPS design may end up being over- or under-provisioned, and the validation of whether the built CPS meets the specified CPS properties may turn out to be erroneous. To address these issues, a run-time verification methodology is proposed, that allows users to explicitly specify the tolerance with which timing properties must be met. To ensure the correctness of measurement-based validation of a built CPS, this article: (i) proposes a test to determine if a given measurement system can validate the properties specified in TTL, and (ii) proposes a measurement-based testing methodology to provide one-sided guarantee that the built CPS meets the specified CPS properties. The guarantees are one-sided in the sense that when the measurement-based testing concludes that the properties are met, then they are guaranteed to be met (so not false positive). However, when the measurement-based testing concludes that the properties were not met, then they may have met (there can be false negative). In order to validate our claims, we built a model of flying paster (part of the printing press that swaps in a new roll of paper when the current roll is about to finish) using Arduino Mega 2560 and two Hansen brushed DC motors and specified the timing constraints among the various events in this system, along with the tolerances with which they should be met in TTL. We generated the testing logic and validated that we get no false positive, even though we encounter 4.04% false negative. The rate of false negatives can be reduced to be less than any arbitrary value by using more accurate measurement equipment.  more » « less
Award ID(s):
1645578
PAR ID:
10492295
Author(s) / Creator(s):
; ; ; ;
Publisher / Repository:
Elsevier
Date Published:
Journal Name:
Microprocessors and Microsystems
Volume:
101
Issue:
C
ISSN:
0141-9331
Page Range / eLocation ID:
104890
Format(s):
Medium: X
Sponsoring Org:
National Science Foundation
More Like this
  1. Many Cyber-Physical Systems (CPS) have timing constraints that must be met by the cyber components (software and the network) to ensure safety. It is a tedious job to check if a CPS meets its timing requirement especially when they are distributed and the software and/or the underlying computing platforms are complex. Furthermore, the system design is brittle since a timing failure can still happen e.g., network failure, soft error bit flip, etc. In this paper, we propose a new design methodology called Plan B where timing constraints of the CPS are monitored at the runtime, and a proper backup routine is executed when a timing failure happens to ensure safety. We provide a model on how to express the desired timing behavior using a set of timing constructs in a C/C++ code and how to efficiently monitor them at the runtime. We showcase the effectiveness of our approach by conducting experiments on three case studies: 1) the full software stack for autonomous driving (Apollo), 2) a multi-agent system with 1/10th scale model robots, and 3) a quadrotor for search and rescue application. We show that the system remains safe and stable even when intentional faults are injected to cause a timing failure. We also demonstrate that the system can achieve graceful degradation when a less extreme timing failure happens. 
    more » « less
  2. This paper studies the synthesis of controllers for cyber-physical systems (CPSs) that are required to carry out complex time-sensitive tasks in the presence of an adversary. The time-sensitive task is specified as a formula in the metric interval temporal logic (MITL). CPSs that operate in adversarial environments have typically been abstracted as stochastic games (SGs); however, because traditional SG models do not incorporate a notion of time, they cannot be used in a setting where the objective is time-sensitive. To address this, we introduce durational stochastic games (DSGs). DSGs generalize SGs to incorporate a notion of time and model the adversary’s abilities to tamper with the control input (actuator attack) and manipulate the timing information that is perceived by the CPS (timing attack). We define notions of spatial, temporal, and spatio-temporal robustness to quantify the amounts by which system trajectories under the synthesized policy can be perturbed in space and time without affecting satisfaction of the MITL objective. In the case of an actuator attack, we design computational procedures to synthesize controllers that will satisfy the MITL task along with a guarantee of its robustness. In the presence of a timing attack, we relax the robustness constraint to develop a value iteration-based procedure to compute the CPS policy as a finite-state controller to maximize the probability of satisfying the MITL task. A numerical evaluation of our approach is presented on a signalized traffic network to illustrate our results. 
    more » « less
  3. Roll-to-roll printing has significantly shortened the time from design to production of sensors and IoT devices, while being cost-effective for mass production. But due to less manufacturing tolerance controls available, properties such as sensor thickness, composition, roughness, etc., cannot be precisely controlled. Since these properties likely affect the sensor behavior, roll-to-roll printed sensors require validation testing before they can be deployed in the field. In this work, we improve the testing of Nitrate sensors that need to be calibrated in a solution of known Nitrate concentration for around 1–2 days. To accelerate this process, we observe the initial behavior of the sensors for a few hours, and use a physics-informed machine learning method to predict their measurements 24 hours in the future, thus saving valuable time and testing resources. Due to the variability in roll-to-roll printing, this prediction task requires models that are robust to changes in properties of the new test sensors. We show that existing methods fail at this task and describe a physics-informed machine learning method that improves the prediction robustness to different testing conditions (≈ 1.7× lower in real-world data and ≈ 5× lower in synthetic data when compared with the current state-of-the-art physics-informed machine learning method). 
    more » « less
  4. Cyber-physical systems (CPS) designed in simulators, often consisting of multiple interacting agents (e.g., in multi-agent formations), behave differently in the real-world. We would like to verify these systems during runtime when they are deployed. Thus, we propose robust predictive runtime verification (RPRV) algorithms for: (1) general stochastic CPS under signal temporal logic (STL) tasks, and (2) stochastic multi-agent systems (MAS) under spatio-temporal logic tasks. The RPRV problem presents the following challenges: (1) there may not be sufficient data on the behavior of the deployed CPS, (2) predictive models based on design phase system trajectories may encounter distribution shift during real-world deployment, and (3) the algorithms need to scale to the complexity of MAS and be applicable to spatio-temporal logic tasks. To address these challenges, we assume knowledge of an upper bound on the statistical distance (in terms of anf-divergence) between the trajectory distributions of the system at deployment and design time. We are motivated by our prior work where we proposed an accurate and an interpretable RPRV algorithm for general CPS, which we here extend to the MAS setting and spatio-temporal logic tasks. Specifically, we use a learned predictive model to estimate the system behavior at runtime androbust conformal predictionto obtain probabilistic guarantees by accounting for distribution shifts. Building on our prior work, we perform robust conformal prediction over the robust semantics of spatio-temporal reach and escape logic (STREL) to obtain centralized RPRV algorithms for MAS. We empirically validate our results in a drone swarm simulator, where we show the scalability of our RPRV algorithms to MAS and analyze the impact of different trajectory predictors on the verification result. To the best of our knowledge, these are the first statistically valid algorithms for MAS under distribution shift. 
    more » « less
  5. Formal verification of cyber-physical systems (CPS) is challenging because it has to consider real-time and concurrency aspects that are often absent in ordinary software. Moreover, the software in CPS is often complex and low-level, making it hard to assure that a formal model of the system used for verification is a faithful representation of the actual implementation, which can undermine the value of a verification result. To address this problem, we propose a methodology for building verifiable CPS based on the principle that a formal model of the software can be derivedautomaticallyfrom its implementation. Our approach requires that the system implementation is specified inLingua Franca(LF), a polyglot coordination language tailored for real-time, concurrent CPS, which we made amenable to the specification of safety properties via annotations in the code. The program structure and the deterministic semantics of LF enable automatic construction of formal axiomatic models directly from LF programs. The generated models are automatically checked using Bounded Model Checking (BMC) by the verification engineUclid5using theZ3SMT solver. The proposed technique enables checking a well-defined fragment of Safety Metric Temporal Logic (Safety MTL) formulas. To ensure the completeness of BMC, we present a method to derive an upper bound on the completeness threshold of an axiomatic model based on the semantics of LF. We implement our approach in the LF Verifierand evaluate it using a benchmark suite with 22 programs sampled from real-life applications and benchmarks for Erlang, Lustre, actor-oriented languages, and RTOSes. The LF Verifiercorrectly checks 21 out of 22 programs automatically. 
    more » « less