skip to main content
US FlagAn official website of the United States government
dot gov icon
Official websites use .gov
A .gov website belongs to an official government organization in the United States.
https lock icon
Secure .gov websites use HTTPS
A lock ( lock ) or https:// means you've safely connected to the .gov website. Share sensitive information only on official, secure websites.


Title: The Effect of Intracrystalline Water on the Mechanical Properties of Olivine at Room Temperature
The effect of small concentrations of intracrystalline water on the strength of olivine is significant at asthenospheric temperatures but is poorly constrained at lower temperatures applicable to the shallow lithosphere. We examined the effect of water on the yield stress of olivine during low‐temperature plasticity using room‐temperature Berkovich nanoindentation. The presence of water in olivine (1,600 ppm H/Si) does not affect hardness or yield stress relative to dry olivine (≤40 ppm H/Si) outside of uncertainty but may slightly reduce Young’s modulus. Differences between water‐bearing and dry crystals in similar orientations were minor compared to differences between dry crystals in different orientations. These observations suggest water content does not affect the strength of olivine at low homologous temperatures. Thus, intracrystalline water does not play a role in olivine deformation at these temperatures, implying that water does not lead to weakening in the coldest portions of the mantle.  more » « less
Award ID(s):
1255620 1625032
PAR ID:
10492402
Author(s) / Creator(s):
; ; ; ; ; ; ;  ; ;
Publisher / Repository:
American Geophysical Union
Date Published:
Journal Name:
Geophysical Research Letters
Volume:
51
Issue:
4
ISSN:
0094-8276
Format(s):
Medium: X
Sponsoring Org:
National Science Foundation
More Like this
  1. Hydrogen is a rapidly diffusing monovalent cation in nominally anhydrous minerals (NAMs, such as olivine, orthopyroxene, and clinopyroxene), which is potentially re-equilibrated during silicate melt-rock and aqueous fluid-rock interactions in massif and abyssal peridotites. We apply a 3D numerical diffusion modeling technique to provide first-order timescales of complete hydrogen re-equilibration in olivine, clinopyroxene, and orthopyroxene over the temperature range 600-1200°C. Model crystals are 1-3 mm along the c-axis and utilize H+ diffusion coefficients appropriate for Fe-bearing systems. Two sets of models were run with different boundary compositions: 1) “low-H models” are constrained by mineral-melt equilibrium partitioning with a basaltic melt that has 0.75 wt% H2O and 2) “high-H models,” which utilize the upper end of the estimated range of mantle water solubility for each phase. Both sets of models yield re-equilibration timescales that are identical and are fast for all phases at a given temperature. These timescales have strong log-linear trends as a function of temperature (R2 from 0.97 to 0.99) that can be used to calculate expected re-equilibration time at a given temperature and grain size. At the high end of the model temperatures (1000-1200°C), H+ completely re-equilibrates in olivine, orthopyroxene, and clinopyroxene within minutes to hours, consistent with previous studies. These short timescales indicate that xenolith NAM mantle water contents are likely to be overprinted prior to eruption. The models also resolve the decoupled water-trace element relationship in Southwest Indian Ridge peridotites, in which peridotite REE abundances are reproduced by partial melting models whereas the relatively high NAM H2O contents require later re-equilibration with melt. At temperatures of 600-800°C, which correspond to conditions of hydrothermal alteration of pyroxene to amphibole and talc, H+ re-equilibration typically occurs over a range of timescales spanning days to years. These durations are well within existing estimates for the duration of fluid flow in oceanic hydrothermal systems, suggesting that peridotite NAM water contents are susceptible to diffusive overprinting during higher temperature hydrothermal alteration. Thus, diffusion during aqueous fluid-rock interactions may also explain NAM H2O contents that are too high to reflect residues of melting. These relatively short timescales at low temperatures suggest that the origin of water contents measured in peridotite NAMs requires additional constraints on sample petrogenesis, including petrographic and trace element analyses. Our 3D model results also hint that H+ may diffuse appreciably during peridotite serpentinization, but diffusion coefficients at low temperature are unconstrained and additional experimental investigations are needed. 
    more » « less
  2. The 2021 La Palma eruption (Tajogaite) was unprecedented in magnitude, duration, and degree of monitoring compared to historical volcanism on La Palma. Here, we provide data on melt inclusions in samples from the beginning and end of the eruption to compare the utility of both melt and fluid inclusions as recorders of magma storage. We also investigated compositional heterogeneities within the magmatic plumbing system. We found two populations of olivine crystals: a low Mg# (78–82) population present at the beginning and end of eruption, recording the maximum volatile contents (2.5 wt % H2O, 1,800 ppm F, 700 ppm Cl, 3,800 ppm S) and a higher Mg# (83–86) population sampled toward the end of the eruption, with lower volatile contents. Despite their host composition, melt inclusions share the same maximum range of CO2 concentrations (1.2–1.4 wt %), indicating olivine growth and inclusion capture at similar depths. Overall, both melt and fluid inclusions record similar pressures (450–850 MPa, ∼15–30 km), and when hosted in the same olivine crystal pressures are indistinguishable within error. At these mantle pressures, CO2 is expected to be an exsolved phase explaining the similar range of CO2 between the two samples, but other volatile species (F, Cl, S) behave incompatibly, and thus, the increase between the two olivine populations can be explained by fractional crystallization prior to eruption. Finally, based on our new data, we provide estimates on the total volatile emission of the eruption. 
    more » « less
  3. Abstract. Irrigation has important implications for sustaining global food production by enabling crop water demand to be met even under dry conditions.Added water also cools crop plants through transpiration; irrigation mightthus play an important role in a warmer climate by simultaneously moderating water and high temperature stresses. Here we used satellite-derived evapotranspiration estimates, land surface temperature (LST) measurements, and crop phenological stage information from Nebraska maize to quantify how irrigation relieves both water and temperature stresses. Unlike air temperature metrics, satellite-derived LST revealed a significant irrigation-induced cooling effect, especially during the grain filling period (GFP) of crop growth. This cooling appeared to extend the maize growing season, especially for GFP, likely due to the stronger temperature sensitivity of phenological development during this stage. Our analysis also revealed that irrigation not only reduced water and temperature stress but also weakened the response of yield to these stresses. Specifically, temperature stress was significantly weakened for reproductive processes in irrigated maize. Attribution analysis further suggested that water and high temperature stress alleviation was responsible for 65±10 % and 35±5.3 % of the irrigation yield benefit, respectively. Our study underlines the relative importance of high temperature stress alleviation in yield improvement and the necessity of simulating crop surface temperature to better quantify heat stress effects in crop yield models. Finally, considering the potentially strong interaction between water and heat stress, future research on irrigation benefits should explore the interaction effects between heat and drought alleviation. 
    more » « less
  4. null (Ed.)
    Abstract Olivine is the most abundant mineral in the Earth's upper mantle and subducting slabs. Studying the structural evolution and equation of state of olivine at high-pressure is of fundamental importance in constraining the composition and structure of these regions. Hydrogen can be incorporated into olivine and significantly influence its physical and chemical properties. Previous infrared and Raman spectroscopic studies indicated that local structural changes occur in Mg-rich hydrous olivine (Fo ≥ 95; 4883–9000 ppmw water) at high-pressure. Since water contents of natural olivine are commonly <1000 ppmw, it is inevitable to investigate the effects of such water contents on the equation of state (EoS) and structure of olivine at high-pressure. Here we synthesized a low water content hydrous olivine (Fo95; 1538 ppmw water) at low SiO2 activity and identified that the incorporated hydrogens are predominantly associated with the Si sites. We performed high-pressure single-crystal X-ray diffraction experiments on this olivine to 29.9 GPa. A third-order Birch-Murnaghan equation of state (BM3 EoS) was fit to the pressure-volume data, yielding the following EoS parameters: VT0 = 290.182(1) Å3, KT0 = 130.8(9) GPa, and K′T0 = 4.16(8). The KT0 is consistent with those of anhydrous Mg-rich olivine, which indicates that such low water content has negligible effects on the bulk modulus of olivine. Furthermore, we carried out the structural refinement of this hydrous olivine as a function of pressure to 29.9 GPa. The results indicate that, similar to the anhydrous olivine, the compression of the M1-O and M2-O bonds are comparable, which are larger than that of the Si-O bonds. The compression of M1-O and M2-O bonds of this hydrous olivine are comparable with those of anhydrous olivine, while the Si-O1 and Si-O2 bonds in the hydrous olivine are more compressible than those in the anhydrous olivine. Therefore, this study suggests that low water content has negligible effects on the EoS of olivine, though the incorporation of water softens the Si-O1 and Si-O2 bond. 
    more » « less
  5. null (Ed.)
    Key engineering properties of unsaturated soils such as volume change and shear strength can be defined using the effective stress principle. Several problems like prolonged drought, high-level radioactive waste, buried high voltage cables can subject surface and near-surface unsaturated soils to elevated temperatures. Such elevated temperatures can affect the hydraulic and mechanical behavior of unsaturated soils. It is very important to develop a closed-form model that can reasonably estimate the effective stresses under different elevated temperatures. For this purpose, the current study incorporates the temperature effect into a suction stress-based representation of Bishop’s effective stress. The proposed model accounts for the effect of temperature on matric suction and degree of saturation. A temperature-dependent soil water retention curve is used to account for thermal effects on surface tension, contact angle, and enthalpy of immersion per unit area. The proposed effective stress model is then used to calculate the effective stress for two soils, Pachapa loam, and Seochang sandy clay, at various temperatures ranging from 25°C to 100°C. The validity of the model is examined by comparing the predicted effective degree of saturation and suction stress values against the experimental data reported in the literature for GMZ01 bentonite. At a constant net normal stress, the results for both soils show that the impact of temperature on effective stress can be significant. The proposed model can be used for studying geotechnical and geoenvironmental engineering applications that involve elevated temperatures. 
    more » « less