skip to main content
US FlagAn official website of the United States government
dot gov icon
Official websites use .gov
A .gov website belongs to an official government organization in the United States.
https lock icon
Secure .gov websites use HTTPS
A lock ( lock ) or https:// means you've safely connected to the .gov website. Share sensitive information only on official, secure websites.

Attention:

The NSF Public Access Repository (PAR) system and access will be unavailable from 8:00 PM ET on Friday, March 21 until 8:00 AM ET on Saturday, March 22 due to maintenance. We apologize for the inconvenience.


Title: High conductivity in Ge-doped AlN achieved by a non-equilibrium process
Highly conductive Ge-doped AlN with conductivity of 0.3 (Ω cm)−1 and electron concentration of 2 × 1018 cm−3 was realized via a non-equilibrium process comprising ion implantation and annealing at a moderate thermal budget. Similar to a previously demonstrated shallow donor state in Si-implanted AlN, Ge implantation also showed a shallow donor behavior in AlN with an ionization energy ∼80 meV. Ge showed a 3× higher conductivity than its Si counterpart for a similar doping level. Photoluminescence spectroscopy indicated that higher conductivity for Ge-doped AlN was achieved primarily due to lower compensation. This is the highest n-type conductivity reported for AlN doped with Ge to date and demonstration of technologically useful conductivity in Ge-doped AlN.  more » « less
Award ID(s):
1916800 1653383 1508854
PAR ID:
10493181
Author(s) / Creator(s):
; ; ; ; ; ; ; ; ; ; ;
Publisher / Repository:
AIP Publishing
Date Published:
Journal Name:
Applied Physics Letters
Volume:
122
Issue:
14
ISSN:
0003-6951
Format(s):
Medium: X
Sponsoring Org:
National Science Foundation
More Like this
  1. This work demonstrates the advantage of carrying out silicon ion (Si+) implantation at high temperatures for forming controlled heavily doped regions in gallium oxide. Room temperature (RT, 25 °C) and high temperature (HT, 600 °C) Si implants were carried out into MBE grown (010) β-Ga2O3 films to form ∼350 nm deep Si-doped layers with average concentrations up to ∼1.2 × 1020 cm−3. For such high concentrations, the RT sample was too resistive for measurement, but the HT samples had 82.1% Si dopant activation efficiency with a high sheet electron concentration of 3.3 × 1015 cm−2 and an excellent mobility of 92.8 cm2/V·s at room temperature. X-ray diffraction measurements indicate that HT implantation prevents the formation of other Ga2O3 phases and results in reduced structural defects and lattice damage. These results are highly encouraging for achieving ultra-low resistance heavily doped Ga2O3 layers using ion implantation. 
    more » « less
  2. High room temperature n-type mobility, exceeding 300 cm2/Vs, was demonstrated in Si-doped AlN. Dislocations and CN−1 were identified as the main compensators for AlN grown on sapphire and AlN single crystalline substrates, respectively, limiting the lower doping limit and mobility. Once the dislocation density was reduced by the growth on AlN wafers, C-related compensation could be reduced by controlling the process supersaturation and Fermi level during growth. While the growth on sapphire substrates supported only high doping ([Si] > 5 × 1018 cm−3) and low mobility (∼20 cm2/Vs), growth on AlN with proper compensation management enabled controlled doping at two orders of magnitude lower dopant concentrations. This work is of crucial technological importance because it enables the growth of drift layers for AlN-based power devices. 
    more » « less
  3. Near-ideal behavior in Schottky contacts to Si-doped AlN was observed as evidenced by a low ideality factor of 1.5 at room temperature. A temperature-independent Schottky barrier height of 1.9 eV was extracted from temperature-dependent I–V measurements. An activation energy of ∼300 meV was observed in the series resistance, which corresponded to the ionization energy of the deep Si donor state. Both Ohmic and Schottky contacts were stable up to 650 °C, with around four orders of magnitude rectification at this elevated temperature. These results demonstrate the potential of AlN as a platform for power devices capable of operating in extreme environments. 
    more » « less
  4. State-of-the-art semiconducting aluminum nitride (AlN) films were characterized by cathodoluminescence (CL) spectroscopy in the range of 200–500 nm in an attempt to identify the energy levels within the bandgap and their associated defects. Near-band edge emission (around 206 nm) and high-intensity peaks centered in the near UV range (around 325 nm) are observed for both n- and p-type AlN films. The near UV peaks are potentially associated with oxygen contamination in the films. The p-type AlN films contain at least two unidentified peaks above 400 nm. Assuming that the dopant concentration is independent of compensation (i.e., in the perfect doping limit), three effective donor states are found from Fermi–Dirac statistics for Si-doped AlN, at ∼0.035, ∼0.05, and ∼0.11 eV. Similarly, a single effective acceptor energy of ∼0.03–0.05 eV (depending on the degeneracy factory considered) was found for Be doped AlN. CL investigation of doped AlN films supports claims that AlN may be a promising optoelectronic material, but also points to contaminant mitigation and defect theory as major areas for future study. 
    more » « less
  5. We report the results of the study of the acoustic and optical phonons in Si-doped AlN thin films grown by metal–organic chemical vapor deposition on sapphire substrates. The Brillouin–Mandelstam and Raman light scattering spectroscopies were used to measure the acoustic and optical phonon frequencies close to the Brillouin zone center. The optical phonon frequencies reveal non-monotonic changes, reflective of the variations in the thin film strain and dislocation densities with the addition of Si dopant atoms. The acoustic phonon velocity decreases monotonically with increasing Si dopant concentration, reducing by ∼300 m/s at the doping level of 3 × 1019 cm−3. The knowledge of the acoustic phonon velocities can be used for the optimization of the ultra-wide bandgap semiconductor heterostructures and for minimizing the thermal boundary resistance of high-power devices. 
    more » « less