skip to main content

Attention:

The NSF Public Access Repository (NSF-PAR) system and access will be unavailable from 11:00 PM ET on Thursday, October 10 until 2:00 AM ET on Friday, October 11 due to maintenance. We apologize for the inconvenience.


Title: Millimeter wave radar-based road segmentation
Research into autonomous vehicles has focused on purpose-built vehicles with Lidar, camera, and radar systems. Many vehicles on the road today have sensors built into them to provide advanced driver assistance systems. In this paper we assess the ability of low-end automotive radar coupled with lightweight algorithms to perform scene segmentation. Results from a variety of scenes demonstrate the viability of this approach that complement existing autonomous driving systems.  more » « less
Award ID(s):
2231622
NSF-PAR ID:
10493760
Author(s) / Creator(s):
; ;
Editor(s):
Hedden, Abigail S.; Mazzaro, Gregory J.; Raynal, Ann Marie
Publisher / Repository:
SPIE
Date Published:
ISBN:
9781510661844
Page Range / eLocation ID:
30
Format(s):
Medium: X
Location:
Orlando, United States
Sponsoring Org:
National Science Foundation
More Like this
  1. null (Ed.)
    Autonomous vehicles are predicted to dominate the transportation industry in the foreseeable future. Safety is one of the major chal- lenges to the early deployment of self-driving systems. To ensure safety, self-driving vehicles must sense and detect humans, other vehicles, and road infrastructure accurately, robustly, and timely. However, existing sensing techniques used by self-driving vehicles may not be absolutely reliable. In this paper, we design REITS, a system to improve the reliability of RF-based sensing modules for autonomous vehicles. We conduct theoretical analysis on possible failures of existing RF-based sensing systems. Based on the analysis, REITS adopts a multi-antenna design, which enables constructive blind beamforming to return an enhanced radar signal in the incident direction. REITS can also let the existing radar system sense identifi- cation information by switching between constructive beamforming state and destructive beamforming state. Preliminary results show that REITS improves the detection distance of a self-driving car radar by a factor of 3.63. 
    more » « less
  2. In this paper, we propose a novel 77 GHz automotive radar sensor, and demonstrate its cyberattack resilience using real measurements. The proposed system is built upon a standard Frequency Modulated Continuous Wave (FMCW) radar RF-front end, and the novelty is in the DSP algorithm used at the firmware level. All attack scenarios are based on real radar signals generated by Texas Instruments AWR series 77 GHz radars, and all measurements are done using the same radar family. For sensor networks, including interconnected autonomous vehicles sharing radar measurements, cyberattacks at the network/communication layer is a known critical problem, and has been addressed by several different researchers. What is addressed in this paper is cyberattacks at the physical layer, that is, adversarial agents generating 77 GHz electromagnetic waves which may cause a false target detection, false distance/velocity estimation, or not detecting an existing target. The main algorithm proposed in this paper is not a predictive filtering based cyberattack detection scheme where an “unusual” difference between measured and predicted values triggers an alarm. The core idea is based on a kind of physical challenge-response authentication, and its integration into the radar DSP firmware. 
    more » « less
  3. Association of Collegiate Schools of Architecture (Ed.)

    This research collaboration between the Circular City + Living Systems (CCLS) research lab and the architecture practice Weber Thompson addresses the intersection of three critical topics affecting the carbon footprint of the built environment: adaptive reuse of existing buildings, increased availability of electric and autonomous vehicles, and food production in cities. This study measures and compares the relative impact of the operational carbon impact reduction of an eventual transition to electric autonomous vehicles, the embodied carbon reduction of adaptive building reuse, and the potential to sequester carbon as a benefit from living systems in urban aquaponics operations in adapted parking garages.

     
    more » « less
  4. Regular inspection and monitoring of buildings and infrastructure, that is collectively called the built environment in this paper, is critical. The built environment includes commercial and residential buildings, roads, bridges, tunnels, and pipelines. Automation and robotics can aid in reducing errors and increasing the efficiency of inspection tasks. As a result, robotic inspection and monitoring of the built environment has become a significant research topic in recent years. This review paper presents an in-depth qualitative content analysis of 269 papers on the use of robots for the inspection and monitoring of buildings and infrastructure. The review found nine different types of robotic systems, with unmanned aerial vehicles (UAVs) being the most common, followed by unmanned ground vehicles (UGVs). The study also found five different applications of robots in inspection and monitoring, namely, maintenance inspection, construction quality inspection, construction progress monitoring, as-built modeling, and safety inspection. Common research areas investigated by researchers include autonomous navigation, knowledge extraction, motion control systems, sensing, multi-robot collaboration, safety implications, and data transmission. The findings of this study provide insight into the recent research and developments in the field of robotic inspection and monitoring of the built environment and will benefit researchers, and construction and facility managers, in developing and implementing new robotic solutions. 
    more » « less
  5. Modern-day autonomous vehicles are increasingly becoming complex multidisciplinary systems composed of mechanical, electrical, electronic, computing and information subsystems. Furthermore, the individual constituent technologies employed for developing autonomous vehicles have started maturing up to a point, where it seems beneficial to start looking at the synergistic integration of these components into sub-systems, systems, and potentially, system-of-systems. Hence, this work applies the principles of mechatronics approach of system design, verification and validation for the development of autonomous vehicles. Particularly, we discuss leveraging multidisciplinary codesign practices along with virtual, hybrid and physical prototyping and testing within a concurrent engineering framework to develop and validate a scaled autonomous vehicle using the AutoDRIVE Ecosystem. We also describe a case-study of autonomous parking application using a modular probabilistic framework to illustrate the benefits of the proposed approach. 
    more » « less