skip to main content


Title: REITS: Reflective Surface for Intelligent Transportation Systems
Autonomous vehicles are predicted to dominate the transportation industry in the foreseeable future. Safety is one of the major chal- lenges to the early deployment of self-driving systems. To ensure safety, self-driving vehicles must sense and detect humans, other vehicles, and road infrastructure accurately, robustly, and timely. However, existing sensing techniques used by self-driving vehicles may not be absolutely reliable. In this paper, we design REITS, a system to improve the reliability of RF-based sensing modules for autonomous vehicles. We conduct theoretical analysis on possible failures of existing RF-based sensing systems. Based on the analysis, REITS adopts a multi-antenna design, which enables constructive blind beamforming to return an enhanced radar signal in the incident direction. REITS can also let the existing radar system sense identifi- cation information by switching between constructive beamforming state and destructive beamforming state. Preliminary results show that REITS improves the detection distance of a self-driving car radar by a factor of 3.63.  more » « less
Award ID(s):
1617161
NSF-PAR ID:
10212782
Author(s) / Creator(s):
; ; ; ; ;
Date Published:
Journal Name:
HotMobile
Format(s):
Medium: X
Sponsoring Org:
National Science Foundation
More Like this
  1. Vehicle to Vehicle (V2V) communication allows vehicles to wirelessly exchange information on the surrounding environment and enables cooperative perception. It helps prevent accidents, increase the safety of the passengers, and improve the traffic flow efficiency. However, these benefits can only come when the vehicles can communicate with each other in a fast and reliable manner. Therefore, we investigated two areas to improve the communication quality of V2V: First, using beamforming to increase the bandwidth of V2V communication by establishing accurate and stable collaborative beam connection between vehicles on the road; second, ensuring scalable transmission to decrease the amount of data to be transmitted, thus reduce the bandwidth requirements needed for collaborative perception of autonomous driving vehicles. Beamforming in V2V communication can be achieved by utilizing image-based and LIDAR’s 3D data-based vehicle detection and tracking. For vehicle detection and tracking simulation, we tested the Single Shot Multibox Detector deep learning-based object detection method that can achieve a mean Average Precision of 0.837 and the Kalman filter for tracking. For scalable transmission, we simulate the effect of varying pixel resolutions as well as different image compression techniques on the file size of data. Results show that without compression, the file size for only transmitting the bounding boxes containing detected object is up to 10 times less than the original file size. Similar results are also observed when the file is compressed by lossless and lossy compression to varying degrees. Based on these findings using existing databases, the impact of these compression methods and methods of effectively combining feature maps on the performance of object detection and tracking models will be further tested in the real-world autonomous driving system. 
    more » « less
  2. We are witnessing a race to meet the ever-growing computation requirements of emerging AI applications to provide perception and control in autonomous vehicles — e.g., self-driving cars and UAVs. To remain competitive, vendors are packing more processing units (CPUs, programmable logic, GPUs, and hardware accelerators) into next-generation multiprocessor systems-on-a-chip (MPSoC). As a result, modern embedded platforms are achieving new heights in peak computational capacity. Unfortunately, however, the collateral and inevitable increase in complexity represents a major obstacle for the development of correct-by-design safety-critical real-time applications. Due to the ever-growing gap between fast-paced hardware evolution and comparatively slower evolution of real-time operating systems (RTOS), there is a need for real-time oriented full-platform management frameworks to complement traditional RTOS designs. In this work, we propose one such framework, namely the X-Stream framework, for the definition, synthesis, and analysis of real-time workloads targeting state-of-the-art accelerator-augmented embedded platforms. Our X-Stream framework is designed around two cardinal principles. First, computation and data movements are orchestrated to achieve predictability by design. For this purpose, iterative computation over large data chunks is divided into subsequent segments. These segments are then streamed leveraging the three-phase execution model (load, execute and unload). Second, the framework is workflow-centric: system designers can specify their workflow and the necessary code for workflow orchestration is automatically generated. In addition to automating the deployment of user-defined hardware-accelerated workloads, X-Stream supports the deployment of some computation segments on traditional CPUs. Finally, X-Stream allows the definition of real-time partitions. Each partition groups applications belonging to the same criticality level and that share the same set of hardware resources, with support for preemptive priority-driven scheduling. Conversely, freedom from interference for applications deployed in different partitions is guaranteed by design. We provide a full-system implementation that includes RTOS integration and showcase the proposed X-Stream framework on a Xilinx Ultrascale+ platform by focusing on a matrix-multiplication and addition kernel use-case. 
    more » « less
  3. null (Ed.)
    This paper presents Millimetro, an ultra-low-power tag that can be localized at high accuracy over extended distances. We develop Mil-limetro in the context of autonomous driving to efficiently localize roadside infrastructure such as lane markers and road signs, even if obscured from view, where visual sensing fails. While RF-based localization offers a natural solution, current ultra-low-power local-ization systems struggle to operate accurately at extended ranges under strict latency requirements. Millimetro addresses this challenge by re-using existing automotive radars that operate at mmWave fre-quency where plentiful bandwidth is available to ensure high accuracy and low latency. We address the crucial free space path loss problem experienced by signals from the tag at mmWave bands by building upon Van Atta Arrays that retro-reflect incident energy back towards the transmitting radar with minimal loss and low power consumption. Our experimental results indoors and outdoors demonstrate a scal-able system that operates at a desirable range (over 100 m), accuracy (centimeter-level), and ultra-low-power (< 3 uW). 
    more » « less
  4. With the large-scale deployment of connected and autonomous vehicles, the demand on wireless communication spectrum increases rapidly in vehicular networks. Due to increased demand, the allocated spectrum at the 5.9 GHz band for vehicular communication cannot be used efficiently for larger payloads to improve cooperative sensing, safety, and mobility. To achieve higher data rates, the millimeter-wave (mmWave) automotive radar spectrum at 76-81 GHz band can be exploited for communication. However, instead of employing spectral isolation or interference mitigation schemes between communication and radar, we design a joint system for vehicles to perform both functions using the same waveform. In this paper, we propose radar processing methods that use pilots in the orthogonal frequency-division multiplexing (OFDM) waveform. While the radar receiver exploits pilots for sensing, the communication receiver can leverage pilots to estimate the time-varying channel. The simulation results show that proposed radar processing can be efficiently implemented and meet the automotive radar requirements. We also present joint system design problems to find optimal resource allocation between data and pilot subcarriers based on radar estimation accuracy and effective channel capacity. 
    more » « less
  5. null (Ed.)
    The advent of pervasive autonomous systems such as self-driving cars and drones has raised questions about their safety and trustworthiness. This is particularly relevant in the event of on-board subsystem errors or failures. In this research, we show how encoded Extended Kalman Filter can be used to detect anomalous behaviors of critical components of nonlinear autonomous systems: sensors, actuators, state estimation algorithms and control software. As opposed to prior work that is limited to linear systems or requires the use of cumbersome machine learned checks with fixed detection thresholds, the proposed approach necessitates the use of time-varying checks with dynamically adaptive thresholds. The method is lightweight in comparison to existing methods (does not rely on machine learning paradigms) and achieves high coverage as well as low detection latency of errors. A quadcopter and an automotive steer-by-wire system are used as test vehicles for the research and simulation and hardware results indicate the overhead, coverage and error detection latency benefits of the proposed approach. 
    more » « less