skip to main content
US FlagAn official website of the United States government
dot gov icon
Official websites use .gov
A .gov website belongs to an official government organization in the United States.
https lock icon
Secure .gov websites use HTTPS
A lock ( lock ) or https:// means you've safely connected to the .gov website. Share sensitive information only on official, secure websites.


Title: REITS: Reflective Surface for Intelligent Transportation Systems
Autonomous vehicles are predicted to dominate the transportation industry in the foreseeable future. Safety is one of the major chal- lenges to the early deployment of self-driving systems. To ensure safety, self-driving vehicles must sense and detect humans, other vehicles, and road infrastructure accurately, robustly, and timely. However, existing sensing techniques used by self-driving vehicles may not be absolutely reliable. In this paper, we design REITS, a system to improve the reliability of RF-based sensing modules for autonomous vehicles. We conduct theoretical analysis on possible failures of existing RF-based sensing systems. Based on the analysis, REITS adopts a multi-antenna design, which enables constructive blind beamforming to return an enhanced radar signal in the incident direction. REITS can also let the existing radar system sense identifi- cation information by switching between constructive beamforming state and destructive beamforming state. Preliminary results show that REITS improves the detection distance of a self-driving car radar by a factor of 3.63.  more » « less
Award ID(s):
1617161
PAR ID:
10212782
Author(s) / Creator(s):
; ; ; ; ;
Date Published:
Journal Name:
HotMobile
Format(s):
Medium: X
Sponsoring Org:
National Science Foundation
More Like this
  1. Multi-sensor fusion has been widely used by autonomous vehicles (AVs) to integrate the perception results from different sensing modalities including LiDAR, camera and radar. Despite the rapid development of multi-sensor fusion systems in autonomous driving, their vulnerability to malicious attacks have not been well studied. Although some prior works have studied the attacks against the perception systems of AVs, they only consider a single sensing modality or a camera-LiDAR fusion system, which can not attack the sensor fusion system based on LiDAR, camera, and radar. To fill this research gap, in this paper, we present the first study on the vulnerability of multi-sensor fusion systems that employ LiDAR, camera, and radar. Specifically, we propose a novel attack method that can simultaneously attack all three types of sensing modalities using a single type of adversarial object. The adversarial object can be easily fabricated at low cost, and the proposed attack can be easily performed with high stealthiness and flexibility in practice. Extensive experiments based on a real-world AV testbed show that the proposed attack can continuously hide a target vehicle from the perception system of a victim AV using only two small adversarial objects. 
    more » « less
  2. Hedden, Abigail S.; Mazzaro, Gregory J.; Raynal, Ann Marie (Ed.)
    Research into autonomous vehicles has focused on purpose-built vehicles with Lidar, camera, and radar systems. Many vehicles on the road today have sensors built into them to provide advanced driver assistance systems. In this paper we assess the ability of low-end automotive radar coupled with lightweight algorithms to perform scene segmentation. Results from a variety of scenes demonstrate the viability of this approach that complement existing autonomous driving systems. 
    more » « less
  3. With the large-scale deployment of connected and autonomous vehicles, the demand on wireless communication spectrum increases rapidly in vehicular networks. Due to increased demand, the allocated spectrum at the 5.9 GHz band for vehicular communication cannot be used efficiently for larger payloads to improve cooperative sensing, safety, and mobility. To achieve higher data rates, the millimeter-wave (mmWave) automotive radar spectrum at 76-81 GHz band can be exploited for communication. However, instead of employing spectral isolation or interference mitigation schemes between communication and radar, we design a joint system for vehicles to perform both functions using the same waveform. In this paper, we propose radar processing methods that use pilots in the orthogonal frequency-division multiplexing (OFDM) waveform. While the radar receiver exploits pilots for sensing, the communication receiver can leverage pilots to estimate the time-varying channel. The simulation results show that proposed radar processing can be efficiently implemented and meet the automotive radar requirements. We also present joint system design problems to find optimal resource allocation between data and pilot subcarriers based on radar estimation accuracy and effective channel capacity. 
    more » « less
  4. As communication technologies develop, an au- tonomous vehicle will receive information not only from its own sensing system but also from infrastructures and other vehicles through communication. This paper discusses how to exploit a sequence of future information that is shared among autonomous vehicles, including the planned positions, the velocities and the lane numbers. A hybrid system model is constructed, and a control policy is designed to utilize shared sequence information for making navigation decisions. For the high-level discrete state transitions, the shared information is used to determine when to change lane, if lane changing will bring reward for the autonomous vehicle and there exists a feasible continuous state controller. For the low-level continuous state space controller generation, the shared information can relax the safety interval constraints in the existing model predictive control method. In the system level, the information sharing can increase the traffic flow and improve driving comfort. We demonstrate the advantages of information sharing in control and navigation in simulation. 
    more » « less
  5. Vehicle to Vehicle (V2V) communication allows vehicles to wirelessly exchange information on the surrounding environment and enables cooperative perception. It helps prevent accidents, increase the safety of the passengers, and improve the traffic flow efficiency. However, these benefits can only come when the vehicles can communicate with each other in a fast and reliable manner. Therefore, we investigated two areas to improve the communication quality of V2V: First, using beamforming to increase the bandwidth of V2V communication by establishing accurate and stable collaborative beam connection between vehicles on the road; second, ensuring scalable transmission to decrease the amount of data to be transmitted, thus reduce the bandwidth requirements needed for collaborative perception of autonomous driving vehicles. Beamforming in V2V communication can be achieved by utilizing image-based and LIDAR’s 3D data-based vehicle detection and tracking. For vehicle detection and tracking simulation, we tested the Single Shot Multibox Detector deep learning-based object detection method that can achieve a mean Average Precision of 0.837 and the Kalman filter for tracking. For scalable transmission, we simulate the effect of varying pixel resolutions as well as different image compression techniques on the file size of data. Results show that without compression, the file size for only transmitting the bounding boxes containing detected object is up to 10 times less than the original file size. Similar results are also observed when the file is compressed by lossless and lossy compression to varying degrees. Based on these findings using existing databases, the impact of these compression methods and methods of effectively combining feature maps on the performance of object detection and tracking models will be further tested in the real-world autonomous driving system. 
    more » « less