skip to main content


This content will become publicly available on October 1, 2024

Title: Conditional Variational Autoencoder for Functional Connectivity Analysis of Autism Spectrum Disorder Functional Magnetic Resonance Imaging Data: A Comparative Study

Generative models, such as Variational Autoencoders (VAEs), are increasingly employed for atypical pattern detection in brain imaging. During training, these models learn to capture the underlying patterns within “normal” brain images and generate new samples from those patterns. Neurodivergent states can be observed by measuring the dissimilarity between the generated/reconstructed images and the input images. This paper leverages VAEs to conduct Functional Connectivity (FC) analysis from functional Magnetic Resonance Imaging (fMRI) scans of individuals with Autism Spectrum Disorder (ASD), aiming to uncover atypical interconnectivity between brain regions. In the first part of our study, we compare multiple VAE architectures—Conditional VAE, Recurrent VAE, and a hybrid of CNN parallel with RNN VAE—aiming to establish the effectiveness of VAEs in application FC analysis. Given the nature of the disorder, ASD exhibits a higher prevalence among males than females. Therefore, in the second part of this paper, we investigate if introducing phenotypic data could improve the performance of VAEs and, consequently, FC analysis. We compare our results with the findings from previous studies in the literature. The results showed that CNN-based VAE architecture is more effective for this application than the other models.

 
more » « less
Award ID(s):
1846658
NSF-PAR ID:
10494052
Author(s) / Creator(s):
;
Publisher / Repository:
Bioengineering
Date Published:
Journal Name:
Bioengineering
Volume:
10
Issue:
10
ISSN:
2306-5354
Page Range / eLocation ID:
1209
Format(s):
Medium: X
Sponsoring Org:
National Science Foundation
More Like this
  1. Abstract

    There is ample evidence of atypical functional connectivity (FC) in autism spectrum disorders (ASDs). However, transient relationships between neural networks cannot be captured by conventional static FC analyses. Dynamic FC (dFC) approaches have been used to identify repeating, transient connectivity patterns (“states”), revealing spatiotemporal network properties not observable in static FC. Recent studies have found atypical dFC in ASDs, but questions remain about the nature of group differences in transient connectivity, and the degree to which states persist or change over time. This study aimed to: (a) describe and relate static and dynamic FC in typical development and ASDs, (b) describe group differences in transient states and compare them with static FC patterns, and (c) examine temporal stability and flexibility between identified states. Resting‐state functional magnetic resonance imaging (fMRI) data were collected from 62 ASD and 57 typically developing (TD) children and adolescents. Whole‐brain, data‐driven regions of interest were derived from group independent component analysis. Sliding window analysis and k‐means clustering were used to explore dFC and identify transient states. Across all regions, static overconnnectivity and increased variability over time in ASDs predominated. Furthermore, significant patterns of group differences emerged in two transient states that were not observed in the static FC matrix, with group differences in one state primarily involving sensory and motor networks, and in the other involving higher‐order cognition networks. Default mode network segregation was significantly reduced in ASDs in both states. Results highlight that dynamic approaches may reveal more nuanced transient patterns of atypical FC in ASDs.

     
    more » « less
  2. Lay Summary

    Parts of the brain can work together by synchronizing the activity of the neurons. We recorded the electrical activity of the brain in adolescents with autism spectrum disorder and then compared the recording to that of their peers without the diagnosis. We found that in participants with autism, there were a lot of very short time periods of non‐synchronized activity between frontal and parietal parts of the brain. Mathematical models show that the brain system with this kind of activity is very sensitive to external events.

     
    more » « less
  3. Abstract Introduction

    Connectome‐based predictive modeling (CPM) is a recently developed machine‐learning‐based framework to predict individual differences in behavior from functional brain connectivity (FC). In these models, FC was operationalized as Pearson's correlation between brain regions’ fMRI time courses. However, Pearson's correlation is limited since it only captures linear relationships. We developed a more generalized metric of FC based on information flow. This measure represents FC by abstracting the brain as a flow network of nodes that send bits of information to each other, where bits are quantified through an information theory statistic called transfer entropy.

    Methods

    With a sample of individuals performing a sustained attention task and resting during functional magnetic resonance imaging (fMRI) (n = 25), we use the CPM framework to build machine‐learning models that predict attention from FC patterns measured with information flow. Models trained on− 1 participants’ task‐based patterns were applied to an unseen individual's resting‐state pattern to predict task performance. For further validation, we applied our model to two independent datasets that included resting‐state fMRI data and a measure of attention (Attention Network Task performance [n = 41] and stop‐signal task performance [n = 72]).

    Results

    Our model significantly predicted individual differences in attention task performance across three different datasets.

    Conclusions

    Information flow may be a useful complement to Pearson's correlation as a measure of FC because of its advantages for nonlinear analysis and network structure characterization.

     
    more » « less
  4. Background: Schizophrenia affects around 1% of the global population. Functional connectivity extracted from resting-state functional magnetic resonance imaging (rs-fMRI) has previously been used to study schizophrenia and has great potential to provide novel insights into the disorder. Some studies have shown abnormal functional connectivity in the default mode network (DMN) of individuals with schizophrenia, and more recent studies have shown abnormal dynamic functional connectivity (dFC) in individuals with schizophrenia. However, DMN dFC and the link between abnormal DMN dFC and symptom severity have not been well-characterized. Method: Resting-state fMRI data from subjects with schizophrenia (SZ) and healthy controls (HC) across two datasets were analyzed independently. We captured seven maximally independent subnodes in the DMN by applying group independent component analysis and estimated dFC between subnode time courses using a sliding window approach. A clustering method separated the dFCs into five reoccurring brain states. A feature selection method modeled the difference between SZs and HCs using the state-specific FC features. Finally, we used the transition probability of a hidden Markov model to characterize the link between symptom severity and dFC in SZ subjects. Results: We found decreases in the connectivity of the anterior cingulate cortex (ACC) and increases in the connectivity between the precuneus (PCu) and the posterior cingulate cortex (PCC) (i.e., PCu/PCC) of SZ subjects. In SZ, the transition probability from a state with weaker PCu/PCC and stronger ACC connectivity to a state with stronger PCu/PCC and weaker ACC connectivity increased with symptom severity. Conclusions: To our knowledge, this was the first study to investigate DMN dFC and its link to schizophrenia symptom severity. We identified reproducible neural states in a data-driven manner and demonstrated that the strength of connectivity within those states differed between SZs and HCs. Additionally, we identified a relationship between SZ symptom severity and the dynamics of DMN functional connectivity. We validated our results across two datasets. These results support the potential of dFC for use as a biomarker of schizophrenia and shed new light upon the relationship between schizophrenia and DMN dynamics. 
    more » « less
  5. Abstract

    Functional connectivity (FC) profiles contain subject-specific features that are conserved across time and have potential to capture brain–behavior relationships. Most prior work has focused on spatial features (nodes and systems) of these FC fingerprints, computed over entire imaging sessions. We propose a method for temporally filtering FC, which allows selecting specific moments in time while also maintaining the spatial pattern of node-based activity. To this end, we leverage a recently proposed decomposition of FC into edge time series (eTS). We systematically analyze functional magnetic resonance imaging frames to define features that enhance identifiability across multiple fingerprinting metrics, similarity metrics, and data sets. Results show that these metrics characteristically vary with eTS cofluctuation amplitude, similarity of frames within a run, transition velocity, and expression of functional systems. We further show that data-driven optimization of features that maximize fingerprinting metrics isolates multiple spatial patterns of system expression at specific moments in time. Selecting just 10% of the data can yield stronger fingerprints than are obtained from the full data set. Our findings support the idea that FC fingerprints are differentially expressed across time and suggest that multiple distinct fingerprints can be identified when spatial and temporal characteristics are considered simultaneously.

     
    more » « less