Turbulent flows have been used for millennia to mix solutes; a familiar example is stirring cream into coffee. However, many energy, environmental, and industrial processes rely on the mixing of solutes in porous media where confinement suppresses inertial turbulence. As a result, mixing is drastically hindered, requiring fluid to permeate long distances for appreciable mixing and introducing additional steps to drive mixing that can be expensive and environmentally harmful. Here, we demonstrate that this limitation can be overcome just by adding dilute amounts of flexible polymers to the fluid. Flow-driven stretching of the polymers generates an elastic instability, driving turbulent-like chaotic flow fluctuations, despite the pore-scale confinement that prohibits typical inertial turbulence. Using in situ imaging, we show that these fluctuations stretch and fold the fluid within the pores along thin layers (“lamellae”) characterized by sharp solute concentration gradients, driving mixing by diffusion in the pores. This process results in a reduction in the required mixing length, a increase in solute transverse dispersivity, and can be harnessed to increase the rate at which chemical compounds react by —enhancements that we rationalize using turbulence-inspired modeling of the underlying transport processes. Our work thereby establishes a simple, robust, versatile, and predictive way to mix solutes in porous media, with potential applications ranging from large-scale chemical production to environmental remediation.
more »
« less
A Low‐Cost Programmable Reversing Flow Column Apparatus for Investigating Mixing Zones
Abstract This note describes the development and testing of a novel, programmable reversing flow 1D (R1D) experimental column apparatus designed to investigate reaction, sorption, and transport of solutes in aquifers within dynamic reversing flow zones where waters with different chemistries mix. The motivation for constructing this apparatus was to understand the roles of mixing and reaction on arsenic discharging through a tidally fluctuating riverbank. The apparatus can simulate complex transient flux schedules similar to natural flow regimes The apparatus uses an Arduino microcontroller to control flux magnitude through two peristaltic pumps. Solenoid valves control flow direction from two separate reservoirs. In‐line probes continually measure effluent electrical conductance, pH, oxidation–reduction potential, and temperature. To understand how sensitive physical solute transport is to deviations from the real hydrograph of the tidally fluctuating river, two experiments were performed using: (1) a simpler constant magnitude, reversing flux direction schedule (RCF); and (2) a more environmentally relevant variable magnitude, reversing flux direction schedule (RVF). Wherein, flux magnitude was ramped up and down according to a sine wave. Modeled breakthrough curves of chloride yielded nearly identical dispersivities under both flow regimes. For the RVF experiment, Peclet numbers captured the transition between diffusion and dispersion dominated transport in the intertidal interval. Therefore, the apparatus accurately simulated conservative, environmentally relevant mixing under transient, variable flux flow regimes. Accurately generating variable flux reversing flow regimes is important to simulate the interaction between flow velocity and chemical reactions where Brownian diffusion of solutes to solid‐phase reaction sites is kinetically limited.
more »
« less
- PAR ID:
- 10495005
- Publisher / Repository:
- Wiley
- Date Published:
- Journal Name:
- Groundwater
- ISSN:
- 0017-467X
- Format(s):
- Medium: X
- Sponsoring Org:
- National Science Foundation
More Like this
-
-
Abstract Spreading and mixing are complementary processes that promote reaction of two reactive aqueous solutes present in contiguous plumes in groundwater. Spreading reconfigures the plume geometry, elongating the interface between the plumes, while mixing increases the volume of aquifer occupied by each plume, bringing the solute molecules together to react. Since reaction only occurs where the two solute plumes are in contact with each other, local mechanisms that drive flow and transport near the interface between the plumes control the amount of reaction. This work uses local characteristics of the plumes and the flow field near the plume interface to analyze the relative contributions of pore‐scale mixing and mechanical dispersion to instantaneous, irreversible, bimolecular reaction in a homogeneous aquifer with active spreading caused by radial flow from a well. Two solutes are introduced in sequence at the well, creating concentric circular plumes. We allow for incomplete mixing of the solutes in the pore space, by modeling the pore space as a segregated compartment and a mixed compartment with first‐order mass transfer between the two compartments. We develop semi‐analytical expressions for concentrations of the solutes in both compartments. We found that the relative contribution of mechanical dispersion to reaction increases over time and also increases due to increases in the Peclet number, in the relative source concentration of the chasing solute, and in the mass transfer rate from the segregated compartment to the mixed compartment of the pore space.more » « less
-
Numerical models have been extensively used to understand and predict flow and reactive transport processes in the hyporheic zone. However, most models focus on fully saturated riverbeds without accounting for surface water stage fluctuations related to precipitation and flooding. To capture the complete picture of hyporheic processes in riverbeds and riverbanks, we developed a fully-coupled multiphase reactive transport solver using the Open Source Field Operation And Manipulation (OpenFOAM) platform. This solver captures surface water stage fluctuations and partially-saturated flow in fluvial sediment using VoF two-phase flow and extendedDarcy’s Law two-phase flow models for surface and subsurface domains, respectively. The transport models designed for partially saturated conditions in both domains are implemented. A geochemical reaction module, PhreeqcRM, is integrated into the solver to facilitate complex geochemical reaction networks. A two-way conservative flux boundary condition is implemented at the surface-subsurface interface to realistically map fluxes. The solver’s capability is illustrated through a variety of hyporheic-related problems across spatial scales. These include laboratory experiments and reactive transport in two and three dimensions, from the bedform scale to multiscale riverbeds and riverbanks with fluctuating surface water flow. This novel solver allows for quantifying dynamics in the hyporheic zone with fewer simplifications. Based on the code structure and parallel design of OpenFOAM, the solver can simulate large, three-dimensional (3D) multiscale cases. The code, examples, and pre- and post-processing scripts are all open source, providing community access to use and modify them as desired.more » « less
-
Abstract Microstructure profiling was utilized to estimate vertical mixing (via vertical turbulent buoyancy flux) during a tidal pulse in the interior Merrimack River plume in calm winds. Multiple stratified shear mixing regimes appear and evolve with time. Initially the plume acts as a nearfield jet, with mixing in the plume (plume layer mixing) and over the plume‐ambient interface (nearfield interfacial mixing). As the plume grows, interfacial mixing is suppressed offshore of the nearfield as currents slow, diminishing turbulent exchange between plume and shelf. At the end of ebb, ambient tidal currents reverse direction below plume, initiating another mode of internal, interfacial mixing (coined here as tidal interfacial mixing), allowing exchange between plume and ambient waters offshore. This work highlights previously unreported tidally modulated mixing within the near and midfield of a river plume.more » « less
-
Accurately identifying the onset of transitional and turbulent flow within any pipe flow environment is of great interest. Most often, the critical Reynolds number (Re) is used to pinpoint the onset of turbulence. However, the critical Re is known to be highly variable, depending on the specifics of the flow system. Thus, for flows (e.g., blood flows), where only one realization (i.e., one mean Re) exists, the presence of transitional and turbulent flow behaviors cannot be accurately determined. In this work, we aim to address this by evaluating the extent to which instantaneous time-frequency (TF)-based analysis of the fluctuating velocity field can be used to evaluate the onset of transitional and turbulent flow regimes. Because current TF analysis methods are not suitable for this, we propose a novel “wavelet-Hilbert time-frequency” (WHTF) method, which we validate herein. Using the WHTF method, we analyzed the instantaneous dominant frequency of three planar particle image velocimetry-captured pipe flows, which included one steady and two pulsatile with Womersley numbers of 4 and 12. For each case, data were captured at Re's spanning 800–4500. The instantaneous dominant frequency analysis of these flows revealed that the magnitude, size, and coherence of two-dimensional spatial frequency structures were uniquely different across flow regimes. Specifically, the transitional regime maintained the most coherent, but lowest magnitude frequency structures, while the laminar regime had the highest magnitude, lowest coherence, and smallest frequency structures. Overall, this study demonstrates the efficacy of TF-based metrics for characterizing the progression of transition and turbulent flow development.more » « less
An official website of the United States government

