Catastrophic release of heavy metals from the King River mine in Colorado and the Minas Gerais dam in Brazil have brought to the forefront the importance of contaminant stabilization and remediation in surface waters. Permeable reactive materials are currently utilized for the remediation of heavy metals and other pollutants by employing reactive media to remove contaminants. This research investigated the use of fly ashes with loss on ignition or sulfur trioxide exceeding ASTM C618 limits to enhance pollutant removal in pervious concrete. The high carbon and sulfur contents of the noncompliant fly ashes provide additional capacity to remove lead, cadmium, and zinc. High-sulfur and high-carbon fly ashes were less effective in metal removal at higher metal concentrations but improved removal at lower concentrations. These results suggest pervious concrete can be designed as an effective remedial technique for use in many infrastructure applications, including beneath permeable pavement, permeable asphalt, revetment, permeable shoulders, gabions for slope stability, mine tailing dams, and emergency surface water cleanup.
more »
« less
Role of carboxylates in the phase determination of metal sulfide nanoparticles
At low carboxylate concentrations the sulfur source is highly reactive thiourea, which gives rise to sulfur rich nanoparticles. At high carboxylate concentrations, the sulfur source is the less reactive thiocyanate, resulting in sulfur poor phases.
more »
« less
- PAR ID:
- 10495042
- Publisher / Repository:
- Royal Society of Chemistry
- Date Published:
- Journal Name:
- Nanoscale Horizons
- Volume:
- 8
- Issue:
- 10
- ISSN:
- 2055-6756
- Page Range / eLocation ID:
- 1386 to 1394
- Format(s):
- Medium: X
- Sponsoring Org:
- National Science Foundation
More Like this
-
-
Carboxylate anions of various chain lengths are important molecules for many applications such as CO2 reduction, membrane-based bioreactors, etc. Also, carboxylate anions are ubiquitous in biological molecules such as amino acids, fatty acids, etc. Therefore, understanding the transport behavior of carboxylates of different chain lengths in polymer materials is important both as a fundamental phenomenon but also for designing materials for applications. Here, we characterized transport behavior by measuring the permeability (P), and total partition coefficient (K) for a series of polymer membranes for four model carboxylate salts—sodium salts of formate (NaOFm), acetate (NaOAc), propionate (NaOPr), and butanoate (NaOBu)—at varied upstream salt concentrations (0.1–1 M) or a series of polyethylene glycol diacrylate (PEGDA)-based membranes with 1) varying pre-polymerization water content; 2) varying uncharged side chain comonomer (polyethylene glycol methacrylate, PEGMA), and 3) varying charged comonomer)2-acrylamido-2-methyl-1-propanesulfonic acid, AMPS). Also, diffusivity values of the four salts through the membranes have been calculated based on the solution diffusion model equation (Pdouble bondK × D), experimentally obtained permeability, and total partition coefficients. For a majority of these membranes, NaOFm's permeability is much higher than the other three carboxylate salts (NaOAc, NaOPr, and NaOBu) seemingly due to the lower chain length and thereby smaller hydrated diameter. In terms of total partition coefficient, a size-based trend is not observed. For example, NaOBu's total partition coefficient (K) is generally the largest among the four, and at higher upstream salt concentrations (1 M), the values of the total partition coefficients of the four salts converge. From this we conclude that the carboxylate salt transport through these PEGDA-based non-porous dense membranes to be primarily driven by kinetics and not sorption.more » « less
-
Abstract Organic sulfur plays a crucial role in the biogeochemistry of aquatic sediments, especially in low sulfate (< 500 μM) environments like freshwater lakes and the Earth's early oceans. To better understand organic sulfur cycling in these systems, we followed organic sulfur in the sulfate‐poor (< 40 μM) iron‐rich (30–80 μM) sediments of Lake Superior from source to sink. We identified microbial populations with shotgun metagenomic sequencing and characterized geochemical species in porewater and solid phases. In anoxic sediments, we found an active sulfur cycle fueled primarily by oxidized organic sulfur. Sediment incubations indicated a microbial capacity to hydrolyze sulfonates, sulfate esters, and sulfonic acids to sulfate. Gene abundances for dissimilatory sulfate reduction (dsrAB) increased with depth and coincided with sulfide maxima. Despite these indicators of sulfide formation, sulfide concentrations remain low (< 40 nM) due to both pyritization and organic matter sulfurization. Immediately below the oxycline, pyrite accounted for 13% of total sedimentary sulfur. Both free and intact lipids in this same interval accumulated disulfides, indicating rapid sulfurization even at low concentrations of sulfide. Our investigation revealed a new model of sulfur cycling in a low‐sulfate environment that likely extends to other modern lakes and possibly the ancient ocean, with organic sulfur both fueling sulfate reduction and consuming the resultant sulfide.more » « less
-
Abstract Subduction is a key component of Earth's long‐term sulfur cycle; however, the mechanisms that drive sulfur from subducting slabs remain elusive. Isotopes are a sensitive indicator of the speciation of sulfur in fluids, sulfide dissolution‐precipitation reactions, and inferring fluid sources. To investigate these processes, we report δ34S values determined by secondary ion mass spectroscopy in sulfides from a global suite of exhumed high‐pressure rocks. Sulfides are classified into two petrogenetic groups: (1) metamorphic, which represent closed‐system (re)crystallization from protolith‐inherited sulfur, and (2) metasomatic, which formed during open system processes, such as an influx of oxidized sulfur. The δ34S values for metamorphic sulfides tend to reflect their precursor compositions: −4.3 ‰ to +13.5 ‰ for metabasic rocks, and −32.4 ‰ to −11.0 ‰ for metasediments. Metasomatic sulfides exhibit a range of δ34S from −21.7 ‰ to +13.9 ‰. We suggest that sluggish sulfur self‐diffusion prevents isotopic fractionation during sulfide breakdown and that slab fluids inherit the isotopic composition of their source. We estimate a composition of −11 ‰ to +8 ‰ for slab fluids, a significantly smaller range than observed for metasomatic sulfides. Large fractionations during metasomatic sulfide precipitation from sulfate‐bearing fluids, and an evolving fluid composition during reactive transport may account for the entire ~36 ‰ range of metasomatic sulfide compositions. Thus, we suggest that sulfates are likely the dominant sulfur species in slab‐derived fluids.more » « less
-
Abstract Hemoglobin III (HbIII) is one of the two oxygen reactive hemoproteins present in the bivalve,Lucina pectinata. The clam inhabits a sulfur‐rich environment and HbIII is the only hemoprotein present in the system which does not yet have a structure described elsewhere. It is known that HbIII exists as a heterodimer with hemoglobin II (HbII) to generate the stable Oxy(HbII‐HbIII) complex but it remains unknown if HbIII can form a homodimeric species. Here, a new chromatographic methodology to separate OxyHbIII from the HbII‐HbIII dimer has been developed, employing a fast performance liquid chromatography and ionic exchange chromatography column. The nature of OxyHbIII in solution at concentrations from 1.6 mg/mL to 20.4 mg/mL was studied using small angle X‐ray scattering (SAXS). The results show that at all concentrations, the Oxy(HbIII‐HbIII) dimer dominates in solution. However, as the concentration increases to nonphysiological values, 20.4 mg/mL, HbIII forms a 30% tetrameric fraction. Thus, there is a direct relationship between the Oxy(HbIII‐HbIII) oligomeric form and hemoglobin concentration. We suggest it is likely that the OxyHbIII dimer contributes to active oxygen transport in tissues ofL pectinata, where the Oxy(HbII‐HbIII) complex is not present.more » « less
An official website of the United States government

