skip to main content
US FlagAn official website of the United States government
dot gov icon
Official websites use .gov
A .gov website belongs to an official government organization in the United States.
https lock icon
Secure .gov websites use HTTPS
A lock ( lock ) or https:// means you've safely connected to the .gov website. Share sensitive information only on official, secure websites.


Title: Bounds on cohomological support varieties
Over a local ring R R , the theory of cohomological support varieties attaches to any bounded complex M M of finitely generated R R -modules an algebraic variety V R ( M ) {\mathrm {V}}_R(M) that encodes homological properties of M M . We give lower bounds for the dimension of V R ( M ) {\mathrm {V}}_R(M) in terms of classical invariants of R R . In particular, when R R is Cohen–Macaulay and not complete intersection we find that there are always varieties that cannot be realized as the cohomological support of any complex. When M M has finite projective dimension, we also give an upper bound for dim ⁡<#comment/> V R ( M ) \dim {\mathrm {V}}_R(M) in terms of the dimension of the radical of the homotopy Lie algebra of R R . This leads to an improvement of a bound due to Avramov, Buchweitz, Iyengar, and Miller on the Loewy lengths of finite free complexes, and it recovers a result of Avramov and Halperin on the homotopy Lie algebra of R R . Finally, we completely classify the varieties that can occur as the cohomological support of a complex over a Golod ring.  more » « less
Award ID(s):
2236983 2302567 2002173 2140355
PAR ID:
10496073
Author(s) / Creator(s):
; ;
Publisher / Repository:
American Mathematical Society (AMS)
Date Published:
Journal Name:
Transactions of the American Mathematical Society, Series B
Volume:
11
Issue:
21
ISSN:
2330-0000
Format(s):
Medium: X Size: p. 703-726
Size(s):
p. 703-726
Sponsoring Org:
National Science Foundation
More Like this
  1. Let ( R , m ) (R,\mathfrak {m}) be a Noetherian local ring of dimension d ≥<#comment/> 2 d\geq 2 . We prove that if e ( R ^<#comment/> r e d ) > 1 e(\widehat {R}_{red})>1 , then the classical Lech’s inequality can be improved uniformly for all m \mathfrak {m} -primary ideals, that is, there exists ε<#comment/> > 0 \varepsilon >0 such that e ( I ) ≤<#comment/> d ! ( e ( R ) −<#comment/> ε<#comment/> ) ℓ<#comment/> ( R / I ) e(I)\leq d!(e(R)-\varepsilon )\ell (R/I) for all m \mathfrak {m} -primary ideals I ⊆<#comment/> R I\subseteq R . This answers a question raised by Huneke, Ma, Quy, and Smirnov [Adv. Math. 372 (2020), pp. 107296, 33]. We also obtain partial results towards improvements of Lech’s inequality when we fix the number of generators of I I
    more » « less
  2. In this article we study base change of Poincaré series along a quasi-complete intersection homomorphism φ<#comment/> :<#comment/> Q →<#comment/> R \varphi \colon Q \to R , where Q Q is a local ring with maximal ideal m \mathfrak {m} . In particular, we give a precise relationship between the Poincaré series P M Q ( t ) \mathrm {P}^Q_M(t) of a finitely generated R R -module M M to P M R ( t ) \mathrm {P}^R_M(t) when the kernel of φ<#comment/> \varphi is contained in m a n n Q ( M ) \mathfrak {m}\,\mathrm {ann}_Q(M) . This generalizes a classical result of Shamash for complete intersection homomorphisms. Our proof goes through base change formulas for Poincaré series under the map of dg algebras Q →<#comment/> E Q\to E , with E E the Koszul complex on a minimal set of generators for the kernel of φ<#comment/> \varphi
    more » « less
  3. We formulate and prove a Conner–Floyd isomorphism for the algebraic K-theory of arbitrary qcqs derived schemes. To that end, we study a stable ∞<#comment/> \infty -category of non- A 1 \mathbb {A}^1 -invariant motivic spectra, which turns out to be equivalent to the ∞<#comment/> \infty -category of fundamental motivic spectra satisfying elementary blowup excision, previously introduced by the first and third authors. We prove that this ∞<#comment/> \infty -category satisfies P 1 \mathbb {P}^1 -homotopy invariance and weighted A 1 \mathbb {A}^1 -homotopy invariance, which we use in place of A 1 \mathbb {A}^1 -homotopy invariance to obtain analogues of several key results from A 1 \mathbb {A}^1 -homotopy theory. These allow us in particular to define a universal oriented motivic E ∞<#comment/> \mathbb {E}_\infty -ring spectrum M G L \mathrm {MGL} . We then prove that the algebraic K-theory of a qcqs derived scheme X X can be recovered from its M G L \mathrm {MGL} -cohomology via a Conner–Floyd isomorphism\[ M G L ∗<#comment/> ∗<#comment/> ( X ) ⊗<#comment/> L Z [ β<#comment/> ±<#comment/> 1 ] ≃<#comment/> K ∗<#comment/> ∗<#comment/> ( X ) , \mathrm {MGL}^{**}(X)\otimes _{\mathrm {L}{}}\mathbb {Z}[\beta ^{\pm 1}]\simeq \mathrm {K}{}^{**}(X), \]where L \mathrm {L}{} is the Lazard ring and K p , q ( X ) = K 2 q −<#comment/> p ( X ) \mathrm {K}{}^{p,q}(X)=\mathrm {K}{}_{2q-p}(X) . Finally, we prove a Snaith theorem for the periodized version of M G L \mathrm {MGL}
    more » « less
  4. We prove and extend the longest-standing conjecture in ‘ q , t q,t -Catalan combinatorics,’ namely, the combinatorial formula for ∇<#comment/> m s μ<#comment/> \nabla ^m s_{\mu } conjectured by Loehr and Warrington, where s μ<#comment/> s_{\mu } is a Schur function and ∇<#comment/> \nabla is an eigenoperator on Macdonald polynomials. Our approach is to establish a stronger identity of infinite series of G L l GL_l characters involvingSchur Catalanimals; these were recently shown by the authors to represent Schur functions s μ<#comment/> [ −<#comment/> M X m , n ] s_{\mu }[-MX^{m,n}] in subalgebras Λ<#comment/> ( X m , n ) ⊂<#comment/> E \Lambda (X^{m,n})\subset \mathcal {E} isomorphic to the algebra of symmetric functions Λ<#comment/> \Lambda over Q ( q , t ) \mathbb {Q} (q,t) , where E \mathcal {E} is the elliptic Hall algebra of Burban and Schiffmann. We establish a combinatorial formula for Schur Catalanimals as weighted sums of LLT polynomials, with terms indexed by configurations of nested lattice paths callednests, having endpoints and bounding constraints controlled by data called aden. The special case for Λ<#comment/> ( X m , 1 ) \Lambda (X^{m,1}) proves the Loehr-Warrington conjecture, giving ∇<#comment/> m s μ<#comment/> \nabla ^m s_{\mu } as a weighted sum of LLT polynomials indexed by systems of nested Dyck paths. In general, for Λ<#comment/> ( X m , n ) \Lambda (X^{m,n}) our formula implies a new ( m , n ) (m,n) version of the Loehr-Warrington conjecture. In the case where each nest consists of a single lattice path, the nests in a den formula reduce to our previous shuffle theorem for paths under any line. Both this and the ( m , n ) (m,n) Loehr-Warrington formula generalize the ( k m , k n ) (km,kn) shuffle theorem proven by Carlsson and Mellit (for n = 1 n=1 ) and Mellit. Our formula here unifies these two generalizations. 
    more » « less
  5. In this paper we derive the best constant for the following L ∞<#comment/> L^{\infty } -type Gagliardo-Nirenberg interpolation inequality ‖<#comment/> u ‖<#comment/> L ∞<#comment/> ≤<#comment/> C q , ∞<#comment/> , p ‖<#comment/> u ‖<#comment/> L q + 1 1 −<#comment/> θ<#comment/> ‖<#comment/> ∇<#comment/> u ‖<#comment/> L p θ<#comment/> , θ<#comment/> = p d d p + ( p −<#comment/> d ) ( q + 1 ) , \begin{equation*} \|u\|_{L^{\infty }}\leq C_{q,\infty ,p} \|u\|^{1-\theta }_{L^{q+1}}\|\nabla u\|^{\theta }_{L^p},\quad \theta =\frac {pd}{dp+(p-d)(q+1)}, \end{equation*} where parameters q q and p p satisfy the conditions p > d ≥<#comment/> 1 p>d\geq 1 , q ≥<#comment/> 0 q\geq 0 . The best constant C q , ∞<#comment/> , p C_{q,\infty ,p} is given by C q , ∞<#comment/> , p = θ<#comment/> −<#comment/> θ<#comment/> p ( 1 −<#comment/> θ<#comment/> ) θ<#comment/> p M c −<#comment/> θ<#comment/> d , M c ∫<#comment/> R d u c , ∞<#comment/> q + 1 d x , \begin{equation*} C_{q,\infty ,p}=\theta ^{-\frac {\theta }{p}}(1-\theta )^{\frac {\theta }{p}}M_c^{-\frac {\theta }{d}},\quad M_c≔\int _{\mathbb {R}^d}u_{c,\infty }^{q+1} dx, \end{equation*} where u c , ∞<#comment/> u_{c,\infty } is the unique radial non-increasing solution to a generalized Lane-Emden equation. The case of equality holds when u = A u c , ∞<#comment/> ( λ<#comment/> ( x −<#comment/> x 0 ) ) u=Au_{c,\infty }(\lambda (x-x_0)) for any real numbers A A , λ<#comment/> > 0 \lambda >0 and x 0 ∈<#comment/> R d x_{0}\in \mathbb {R}^d . In fact, the generalized Lane-Emden equation in R d \mathbb {R}^d contains a delta function as a source and it is a Thomas-Fermi type equation. For q = 0 q=0 or d = 1 d=1 , u c , ∞<#comment/> u_{c,\infty } have closed form solutions expressed in terms of the incomplete Beta functions. Moreover, we show that u c , m →<#comment/> u c , ∞<#comment/> u_{c,m}\to u_{c,\infty } and C q , m , p →<#comment/> C q , ∞<#comment/> , p C_{q,m,p}\to C_{q,\infty ,p} as m →<#comment/> + ∞<#comment/> m\to +\infty for d = 1 d=1 , where u c , m u_{c,m} and C q , m , p C_{q,m,p} are the function achieving equality and the best constant of L m L^m -type Gagliardo-Nirenberg interpolation inequality, respectively. 
    more » « less