skip to main content
US FlagAn official website of the United States government
dot gov icon
Official websites use .gov
A .gov website belongs to an official government organization in the United States.
https lock icon
Secure .gov websites use HTTPS
A lock ( lock ) or https:// means you've safely connected to the .gov website. Share sensitive information only on official, secure websites.


Title: New water accounting reveals why the Colorado River no longer reaches the sea
Abstract Persistent overuse of water supplies from the Colorado River during recent decades has substantially depleted large storage reservoirs and triggered mandatory cutbacks in water use. The river holds critical importance to more than 40 million people and more than two million hectares of cropland. Therefore, a full accounting of where the river’s water goes en route to its delta is necessary. Detailed knowledge of how and where the river’s water is used can aid design of strategies and plans for bringing water use into balance with available supplies. Here we apply authoritative primary data sources and modeled crop and riparian/wetland evapotranspiration estimates to compile a water budget based on average consumptive water use during 2000–2019. Overall water consumption includes both direct human uses in the municipal, commercial, industrial, and agricultural sectors, as well as indirect water losses to reservoir evaporation and water consumed through riparian/wetland evapotranspiration. Irrigated agriculture is responsible for 74% of direct human uses and 52% of overall water consumption. Water consumed for agriculture amounts to three times all other direct uses combined. Cattle feed crops including alfalfa and other grass hays account for 46% of all direct water consumption.  more » « less
Award ID(s):
2115169 2144169
PAR ID:
10497504
Author(s) / Creator(s):
; ; ; ; ; ; ; ; ; ; ;
Publisher / Repository:
Nature Publishing Group
Date Published:
Journal Name:
Communications Earth & Environment
Volume:
5
Issue:
1
ISSN:
2662-4435
Format(s):
Medium: X
Sponsoring Org:
National Science Foundation
More Like this
  1. Abstract Irrigated agriculture depends on surface water and groundwater, but we do not have a clear picture of how much water is consumed from these sources by different crops across the US over time. Current estimates of crop water consumption are insufficient in providing the spatial granularity and temporal depth required for comprehensive long‐term analysis. To fill this data gap, we utilized crop growth models to quantify the monthly crop water consumption ‐ distinguishing between rainwater, surface water, and groundwater ‐ of the 30 most widely irrigated crops in the US from 1981 to 2019 at 2.5 arc min. These 30 crops represent approximately 95% of US irrigated cropland. We found that the average annual total crop water consumption for these 30 irrigated crops in the US was 154.2 km3, 70% of which was from irrigation. Corn and alfalfa accounted for approximately 16.7 and 24.8 km3of average annual blue crop water consumption, respectively, which is nearly two‐fifths of the blue crop water consumed in the US. Surface water consumption decreased by 41.2%, while groundwater consumption increased by 6.8%, resulting in a 17.3% decline in blue water consumption between 1981 and 2019. We find good agreement between our results and existing modeled evapotranspiration (ET) products, remotely sensed ET estimates (OpenET), and water use data from the US Geological Survey and US Department of Agriculture. Our data set and model can help assess the impact of irrigation practices and water scarcity on crop production and sustainability. 
    more » « less
  2. This study originated with the objective of parameterizing riparian evapotranspiration (ET) in the water budget of the middle Rio Grande of New Mexico.  We hypothesized that flooding and invasions of non-native species would impact the ecosystem's use of water.  Our objectives were to measure and compare the ET of native (Rio Grande cottonwood, Populus deltoides ssp. wizleni) and non-native (saltcedar, Tamarix chinensis, Russian olive, Eleagnus angustifolia) bosque (woodland) communities and to evaluate how water use is affected by climatic variability resulting in high river flows and flooding as well as drought conditions and deep water tables.  This data set contains water table levels monitored at nine sites along the Rio Grande riparian corridor between Albuquerque and Bosque del Apache National Wildlife Refuge.  Data date to 1999.  Two sites remain active and are well into their second decade of monitoring.  One is in a xero-riparian, non-flooding, saltcedar woodland within the Sevilleta National Wildlife Refuge.  The other is in a dense, monotypic saltcedar thicket at the Bosque del Apache NWR that is subject to flood pulses associated with high river flows.   
    more » « less
  3. The Colorado River Basin (CRB) supports the water supply for seven states and forty million people in the Western United States (US) and has been suffering an extensive drought for more than two decades. As climate change continues to reshape water resources distribution in the CRB, its impact can differ in intensity and location, resulting in variations in human adaptation behaviors. The feedback from human systems in response to the environmental changes and the associated uncertainty is critical to water resources management, especially for water-stressed basins. This paper investigates how human adaptation affects water scarcity uncertainty in the CRB and highlights the uncertainties in human behavior modeling. Our focus is on agricultural water consumption, as approximately 80% of the water consumption in the CRB is used in agriculture. We adopted a coupled agent-based and water resources modeling approach for exploring human-water system dynamics, in which an agent is a human behavior model that simulates a farmer’s water consumption decisions. We examined uncertainties at the system, agent, and parameter levels through uncertainty, clustering, and sensitivity analyses. The uncertainty analysis results suggest that the CRB water system may experience 13 to 30 years of water shortage during the 2019–2060 simulation period, depending on the paths of farmers’ adaptation. The clustering analysis identified three decision-making classes: bold, prudent, and forward-looking, and quantified the probabilities of an agent belonging to each class. The sensitivity analysis results indicated agents whose decision making models require further investigation and the parameters with the higher uncertainty reduction potentials. By conducting numerical experiments with the coupled model, this paper presents quantitative and qualitative information about farmers’ adaptation, water scarcity uncertainties, and future research directions for improving human behavior modeling. 
    more » « less
  4. null (Ed.)
    Intensive agriculture alters headwater streams, but our understanding of its effects is limited in tropical regions where rates of agricultural expansion and intensification are currently greatest. Riparian forest protections are an important conservation tool, but whether they provide adequate protection of stream function in these areas of rapid tropical agricultural development has not been well studied. To address these gaps, we conducted a study in the lowland Brazilian Amazon, an area undergoing rapid cropland expansion, to assess the effects of land use change on organic matter dynamics (OM), ecosystem metabolism, and nutrient concentrations and uptake (nitrate and phosphate) in 11 first order streams draining forested (n = 4) or cropland (n = 7) watersheds with intact riparian forests. We found that streams had similar terrestrial litter inputs, but OM biomass was lower in cropland streams. Gross primary productivity was low and not different between land uses, but ecosystem respiration and net ecosystem production showed greater seasonality in cropland streams. Although we found no difference in stream concentrations of dissolved nutrients, phosphate uptake exceeded nitrate uptake in all streams and was higher in cropland than forested streams. This indicates that streams will be more retentive of phosphorus than nitrogen and that if fertilizer nitrogen reaches streams, it will be exported in stream networks. Overall, we found relatively subtle differences in stream function, indicating that riparian buffers have thus far provided protection against major functional shifts seen in other systems. However, the changes we did observe were linked to watershed scale shifts in hydrology, water temperature, and light availability resulting from watershed deforestation. This has implications for the conservation of tens of thousands of stream kilometers across the expanding Amazon cropland region. 
    more » « less
  5. Abstract Reducing energy consumption for urban water management may yield economic and environmental benefits. Few studies provide comprehensive assessments of energy needs for urban water sectors that include both utility operations and household use. Here, we evaluate the energy needs for urban water management in metropolitan Los Angeles (LA) County. Using planning scenarios that include both water conservation and alternative supply options, we estimate energy requirements of water imports, groundwater pumping, distribution in pipes, water and wastewater treatment, and residential water heating across more than one hundred regional water agencies covering over 9 million people. Results show that combining water conservation with alternative local supplies such as stormwater capture and water reuse (nonpotable or indirect potable) can reduce the energy consumption and intensity of water management in LA. Further advanced water treatment for direct potable reuse could increase energy needs. In aggregate, water heating represents a major source of regional energy consumption. The heating factor associated with grid-supplied electricity drives the relative contribution of energy-for-water by utilities and households. For most scenarios of grid operations, energy for household water heating significantly outweighs utility energy consumption. The study demonstrates how publicly available and detailed data for energy and water use supports sustainability planning. The method is applicable to cities everywhere. 
    more » « less