skip to main content
US FlagAn official website of the United States government
dot gov icon
Official websites use .gov
A .gov website belongs to an official government organization in the United States.
https lock icon
Secure .gov websites use HTTPS
A lock ( lock ) or https:// means you've safely connected to the .gov website. Share sensitive information only on official, secure websites.


Title: Variational formulation of higher-order guiding-center Vlasov–Maxwell theory
Extended guiding-center Vlasov–Maxwell equations are derived under the assumption of time-dependent and inhomogeneous electric and magnetic fields that obey the standard guiding-center space-timescale orderings. The guiding-center Vlasov–Maxwell equations are derived up to second order, which contains dipole and quadrupole contributions to the guiding-center polarization and magnetization that include finite-Larmor-radius corrections. Exact energy-momentum conservation laws are derived from the variational formulation of these higher-order guiding-center Vlasov–Maxwell equations.  more » « less
Award ID(s):
2206302
PAR ID:
10498432
Author(s) / Creator(s):
Publisher / Repository:
American Institute of Physics
Date Published:
Journal Name:
Physics of Plasmas
Volume:
30
Issue:
10
ISSN:
1070-664X
Page Range / eLocation ID:
102106
Format(s):
Medium: X
Sponsoring Org:
National Science Foundation
More Like this
  1. Particle energization due to magnetic reconnection is an important unsolved problem for myriad space and astrophysical plasmas. Electron energization in magnetic reconnection has traditionally been examined from a particle, or Lagrangian, perspective using particle-in-cell (PIC) simulations. Guiding-center analyses of ensembles of PIC particles have suggested that Fermi (curvature drift) acceleration and direct acceleration via the reconnection electric field are the primary electron energization mechanisms. However, both PIC guiding-center ensemble analyses and spacecraft observations are performed in an Eulerian perspective. For this work, we employ the continuum Vlasov–Maxwell solver within the Gkeyll simulation framework to reexamine electron energization from a kinetic continuum, Eulerian, perspective. We separately examine the contribution of each drift energization component to determine the dominant electron energization mechanisms in a moderate guide-field Gkeyll reconnection simulation. In the Eulerian perspective, we find that the diamagnetic and agyrotropic drifts are the primary electron energization mechanisms away from the reconnection x-point, where direct acceleration dominates. We compare the Eulerian (Vlasov Gkeyll) results with the wisdom gained from Lagrangian (PIC) analyses. 
    more » « less
  2. Abstract We present fourth-order conservative non-splitting semi-Lagrangian (SL) Hermite essentially non-oscillatory (HWENO) schemes for linear transport equations with applications for nonlinear problems including the Vlasov–Poisson system, the guiding center Vlasov model, and the incompressible Euler equations in the vorticity-stream function formulation. The proposed SL HWENO schemes combine a weak formulation of the characteristic Galerkin method with two newly constructed HWENO reconstruction methods. The new HWENO reconstructions are meticulously designed to strike a delicate balance between curbing numerical oscillation and introducing excessive dissipation. Mass conservation naturally holds due to the weak formulation of the semi-Lagrangian discontinuous Galerkin method and the design of the HWENO reconstructions. We apply a positivity-preserving limiter to maintain the positivity of numerical solutions when needed. Abundant benchmark tests are performed to verify the effectiveness of the proposed SL HWENO schemes. 
    more » « less
  3. The relativistic Vlasov-Maxwell-Landau (r-VML) system and the relativistic Landau (r-LAN) equation are fundamental models that describe the dynamics of an electron gas. In this paper, we introduce a novel weighted energy method and establish the validity of the Hilbert expansion for the one-species r-VML system and r-LAN equation. As the Knudsen number shrinks to zero, we rigorously demonstrate the relativistic Euler-Maxwell limit and relativistic Euler limit, respectively. This successfully resolves the long-standing open problem regarding the hydrodynamic limits of Landau-type equations. 
    more » « less
  4. null (Ed.)
    The exact energy and angular momentum conservation laws are derived by the Noether method for the Hamiltonian and symplectic representations of the gauge-free electromagnetic gyrokinetic Vlasov–Maxwell equations. These gyrokinetic equations, which are solely expressed in terms of electromagnetic fields, describe the low-frequency turbulent fluctuations that perturb a time-independent toroidally-axisymmetric magnetized plasma. The explicit proofs presented here provide a complete picture of the transfer of energy and angular momentum between the gyrocentres and the perturbed electromagnetic fields, in which the crucial roles played by gyrocentre polarization and magnetization effects are highlighted. In addition to yielding an exact angular momentum conservation law, the gyrokinetic Noether equation yields an exact momentum transport equation, which might be useful in more general equilibrium magnetic geometries. 
    more » « less
  5. This article presents an ultraweak discontinuous Petrov-Galerkin (DPG) formulation of the time-harmonic Maxwell equations for the vectorial envelope of the electromagnetic field in a weakly-guiding multi-mode fiber waveguide. This formulation is derived using an envelope ansatz for the vector-valued electric and magnetic field components, factoring out an oscillatory term of exp(-ikz) with a user-defined wavenumber k, where z is the longitudinal fiber axis and field propagation direction. The resulting formulation is a modified system of the time-harmonic Maxwell equations for the vectorial envelope of the propagating field. This envelope is less oscillatory in the z-direction than the original field, so that it can be more efficiently discretized and computed, enabling solutions to the vectorial DPG Maxwell system in fibers that are 1000x longer than previously possible. Different approaches for incorporating a perfectly matched layer for absorbing the outgoing wave modes at the fiber end are derived and compared numerically. The resulting formulation is used to solve a 3D Maxwell model of an ytterbium-doped active gain fiber amplifier, coupled with the heat equation for including thermal effects. The nonlinear model is then used to simulate thermally-induced transverse mode instability (TMI). The numerical experiments demonstrate that it is computationally feasible to perform simulations and analysis of real-length optical fiber laser amplifiers using discretizations of the full vectorial time-harmonic Maxwell equations. The approach promises a new high-fidelity methodology for analyzing TMI in high-power fiber laser systems and is extendable to including other nonlinearities. 
    more » « less