skip to main content
US FlagAn official website of the United States government
dot gov icon
Official websites use .gov
A .gov website belongs to an official government organization in the United States.
https lock icon
Secure .gov websites use HTTPS
A lock ( lock ) or https:// means you've safely connected to the .gov website. Share sensitive information only on official, secure websites.


Title: Spatially quasi-periodic water waves of finite depth
We present a numerical study of spatially quasi-periodic gravity-capillary waves of finite depth in both the initial value problem and travelling wave settings. We adopt a quasi-periodic conformal mapping formulation of the Euler equations, where one-dimensional quasi-periodic functions are represented by periodic functions on a higher-dimensional torus. We compute the time evolution of free surface waves in the presence of a background flow and a quasi-periodic bottom boundary and observe the formation of quasi-periodic patterns on the free surface. Two types of quasi-periodic travelling waves are computed: small-amplitude waves bifurcating from the zero-amplitude solution and larger-amplitude waves bifurcating from finite-amplitude periodic travelling waves. We derive weakly nonlinear approximations of the first type and investigate the associated small-divisor problem. We find that waves of the second type exhibit striking nonlinear behaviour, e.g. the peaks and troughs are shifted non-periodically from the corresponding periodic waves due to the activation of quasi-periodic modes.  more » « less
Award ID(s):
1716560
PAR ID:
10500297
Author(s) / Creator(s):
;
Publisher / Repository:
Royal Society Publishing
Date Published:
Journal Name:
Proceedings of the Royal Society A: Mathematical, Physical and Engineering Sciences
Volume:
479
Issue:
2272
ISSN:
1364-5021
Page Range / eLocation ID:
20230019:1-28
Subject(s) / Keyword(s):
gravity-capillary waves, bottom topography, conformal map, bifurcation
Format(s):
Medium: X
Sponsoring Org:
National Science Foundation
More Like this
  1. We present a numerical study of spatially quasi-periodic travelling waves on the surface of an ideal fluid of infinite depth. This is a generalization of the classic Wilton ripple problem to the case when the ratio of wavenumbers satisfying the dispersion relation is irrational. We propose a conformal mapping formulation of the water wave equations that employs a quasi-periodic variant of the Hilbert transform to compute the normal velocity of the fluid from its velocity potential on the free surface. We develop a Fourier pseudo-spectral discretization of the travelling water wave equations in which one-dimensional quasi-periodic functions are represented by two-dimensional periodic functions on the torus. This leads to an overdetermined nonlinear least-squares problem that we solve using a variant of the Levenberg–Marquardt method. We investigate various properties of quasi-periodic travelling waves, including Fourier resonances, time evolution in conformal space on the torus, asymmetric wave crests, capillary wave patterns that change from one gravity wave trough to the next without repeating and the dependence of wave speed and surface tension on the amplitude parameters that describe a two-parameter family of waves. 
    more » « less
  2. Abstract We formulate the two-dimensional gravity-capillary water wave equations in a spatially quasi-periodic setting and present a numerical study of solutions of the initial value problem. We propose a Fourier pseudo-spectral discretization of the equations of motion in which one-dimensional quasi-periodic functions are represented by two-dimensional periodic functions on a torus. We adopt a conformal mapping formulation and employ a quasi-periodic version of the Hilbert transform to determine the normal velocity of the free surface. Two methods of time-stepping the initial value problem are proposed, an explicit Runge–Kutta (ERK) method and an exponential time-differencing (ETD) scheme. The ETD approach makes use of the small-scale decomposition to eliminate stiffness due to surface tension. We perform a convergence study to compare the accuracy and efficiency of the methods on a traveling wave test problem. We also present an example of a periodic wave profile containing vertical tangent lines that is set in motion with a quasi-periodic velocity potential. As time evolves, each wave peak evolves differently, and only some of them overturn. Beyond water waves, we argue that spatial quasi-periodicity is a natural setting to study the dynamics of linear and nonlinear waves, offering a third option to the usual modeling assumption that solutions either evolve on a periodic domain or decay at infinity. 
    more » « less
  3. Conduits generated by the buoyant dynamics between two miscible Stokes fluids with high viscosity contrast, a type of core–annular flow, exhibit a rich nonlinear wave dynamics. However, little is known about the fundamental wave dispersion properties of the medium. In the present work, a pump is used to inject a time-periodic flow that results in the excitation of propagating small- and large-amplitude periodic travelling waves along the conduit interface. This wavemaker problem is used as a means to measure the linear and nonlinear dispersion relations and corresponding periodic travelling wave profiles. Measurements are favourably compared with predictions from a fully nonlinear, long-wave model (the conduit equation) and the analytically computed linear dispersion relation for two-Stokes flow. A critical frequency is observed, marking the threshold between propagating and non-propagating (spatially decaying) waves. Measurements of wave profiles and the wavenumber–frequency dispersion relation quantitatively agree with wave solutions of the conduit equation. An upshift from the conduit equation's predicted critical frequency is observed and is explained by incorporating a weak recirculating flow into the full two-Stokes flow model. When the boundary condition corresponds to the temporal profile of a nonlinear periodic travelling wave solution of the conduit equation, weakly nonlinear and strongly nonlinear, cnoidal-type waves are observed that quantitatively agree with the conduit nonlinear dispersion relation and wave profiles. This wavemaker problem is an important precursor to the experimental investigation of more general boundary value problems in viscous fluid conduit nonlinear wave dynamics. 
    more » « less
  4. These files contain data supporting all results reported in Lloret et al. "A robust numerical method for the generation and propagation of periodic finite-amplitude internal waves in natural waters using high-accuracy simulations". In Lloret et al. we found: The design and implementation of boundary conditions for the robust generation and simulation of periodic finite-amplitude internal waves is examined in a quasi two-layer continuous stratification using a spectralelement-method-based incompressible flow solver. The commonly used Eulerian approach develops spurious, and potentially catastrophic small-scale numerical features near the wave-generating boundary in a non-linear stratification when the parameter A/(δc) is sufficiently larger than unity; A and δ are measures of the maximum wave-induced vertical velocity and pycnocline thickness, respectively, and c is the linear wave propagation speed. To this end, an Euler–Lagrange approach is developed and implemented to generate robust high-amplitude periodic deep-water internal waves. Central to this approach is to take into account the wave- induced (isopycnal) displacement of the pycnocline in both the vertical and (effectively) upstream directions. With amplitudes not restricted by the limits of linear theory, the Euler–Lagrange-generated waves maintain their structural integrity as they propagate away from the source. The advantages of the high-accuracy numerical method, whose minimal numerical dissipation cannot damp the above near-source spurious numerical features of the purely Eulerian case, can still be preserved and leveraged further along the wave propagation path through the robust reproduction of the non-linear adjustments of the waveform. The near- and far-source robustness of the optimized Euler–Lagrange approach is demonstrated for finite-amplitude waves in a sharp quasi two- layer continuous stratification representative of seasonally stratified lakes. The findings of this study provide an enabling framework for two-dimensional simulations of internal swash zones driven by well-developed non- linear internal waves and, ultimately, the accompanying turbulence-resolving three-dimensional simulations. Please cite as: Lloret, P., Diamessis, P., Stastna, M., & Thomsen, G. N. (2024). Data and scripts from: A robust numerical method for the generation and propagation of periodic finite-amplitude internal waves in natural waters using high-accuracy simulations [Data set]. Cornell University eCommons Repository. https://doi.org/10.7298/5VKW-0303 
    more » « less
  5. The generalized nonlinear Schr\"odinger equation with full dispersion (FDNLS) is considered in the semiclassical regime. The Whitham modulation equations are obtained for the FDNLS equation with general linear dispersion and a generalized, local nonlinearity. Assuming the existence of a four-parameter family of two-phase solutions, a multiple-scales approach yields a system of four independent, first-order, quasi-linear conservation laws of hydrodynamic type that correspond to the slow evolution of the two wavenumbers, mass, and momentum of modulated periodic traveling waves. The modulation equations are further analyzed in the dispersionless and weakly nonlinear regimes. The ill-posedness of the dispersionless equations corresponds to the classical criterion for modulational instability (MI). For modulations of linear waves, ill-posedness coincides with the generalized MI criterion, recently identified by Amiranashvili and Tobisch [New J. Phys., 21 (2019), 033029]. A new instability index is identified by the transition from real to complex characteristics for the weakly nonlinear modulation equations. This instability is associated with long wavelength modulations of nonlinear two-phase wavetrains and can exist even when the corresponding one-phase wavetrain is stable according to the generalized MI criterion. Another interpretation is that while infinitesimal perturbations of a periodic wave may not grow, small but finite amplitude perturbations may grow, hence this index identifies a nonlinear instability mechanism for one-phase waves. Classifications of instability indices for multiple FDNLS equations with higher-order dispersion, including applications to finite-depth water waves and the discrete NLS equation, are presented and compared with direct numerical simulations. 
    more » « less