ABSTRACT Recovering credible cosmological parameter constraints in a weak lensing shear analysis requires an accurate model that can be used to marginalize over nuisance parameters describing potential sources of systematic uncertainty, such as the uncertainties on the sample redshift distribution n(z). Due to the challenge of running Markov chain Monte Carlo (MCMC) in the high-dimensional parameter spaces in which the n(z) uncertainties may be parametrized, it is common practice to simplify the n(z) parametrization or combine MCMC chains that each have a fixed n(z) resampled from the n(z) uncertainties. In this work, we propose a statistically principled Bayesian resampling approach for marginalizing over the n(z) uncertainty using multiple MCMC chains. We self-consistently compare the new method to existing ones from the literature in the context of a forecasted cosmic shear analysis for the HSC three-year shape catalogue, and find that these methods recover statistically consistent error bars for the cosmological parameter constraints for predicted HSC three-year analysis, implying that using the most computationally efficient of the approaches is appropriate. However, we find that for data sets with the constraining power of the full HSC survey data set (and, by implication, those upcoming surveys with even tighter constraints), the choice of method for marginalizing over n(z) uncertainty among the several methods from the literature may modify the 1σ uncertainties on Ωm–S8 constraints by ∼4 per cent, and a careful model selection is needed to ensure credible parameter intervals.
more »
« less
Lyapunov Conditions for Differentiability of Markov Chain Expectations
We consider a family of Markov chains whose transition dynamics are affected by model parameters. Understanding the parametric dependence of (complex) performance measures of such Markov chains is often of significant interest. The derivatives and their continuity of the performance measures w.r.t. the parameters play important roles, for example, in numerical optimization of the performance measures, and quantification of the uncertainties in the performance measures when there are uncertainties in the parameters from the statistical estimation procedures. In this paper, we establish conditions that guarantee the smoothness of various types of intractable performance measures—such as the stationary and random horizon discounted performance measures—of general state space Markov chains and provide probabilistic representations for the derivatives. Funding: C.-H. Rhee is supported by the National Science Foundation [Grant CMMI-2146530].
more »
« less
- Award ID(s):
- 2146530
- PAR ID:
- 10500378
- Publisher / Repository:
- IINFORMS
- Date Published:
- Journal Name:
- Mathematics of Operations Research
- ISSN:
- 0364-765X
- Format(s):
- Medium: X
- Sponsoring Org:
- National Science Foundation
More Like this
-
-
Two recent and seemingly-unrelated techniques for proving mixing bounds for Markov chains are: (i) the framework of Spectral Independence, introduced by Anari, Liu and Oveis Gharan, and its numerous extensions, which have given rise to several breakthroughs in the analysis of mixing times of discrete Markov chains and (ii) the Stochastic Localization technique which has proven useful in establishing mixing and expansion bounds for both log-concave measures and for measures on the discrete hypercube. In this paper, we introduce a framework which connects ideas from both techniques. Our framework unifies, simplifies and extends those two techniques. In its center is the concept of a localization scheme which, to every probability measure, assigns a martingale of probability measures which localize in space as time evolves. As it turns out, to every such scheme corresponds a Markov chain, and many chains of interest appear naturally in this framework. This viewpoint provides tools for deriving mixing bounds for the dynamics through the analysis of the corresponding localization process. Generalizations of concepts of Spectral Independence and Entropic Independence naturally arise from our definitions, and in particular we recover the main theorems in the spectral and entropic independence frameworks via simple martingale arguments (completely bypassing the need to use the theory of high-dimensional expanders). We demonstrate the strength of our proposed machinery by giving short and (arguably) simpler proofs to many mixing bounds in the recent literature, including giving the first O(nlogn) bound for the mixing time of Glauber dynamics on the hardcore-model (of arbitrary degree) in the tree-uniqueness regime.more » « less
-
Dielectric elastomers are employed for a wide variety of adaptive structures. Many of these soft elastomers exhibit significant rate-dependencies in their response. Accurately quantifying this viscoelastic behavior is non-trivial and in many cases a nonlinear modeling framework is required. Fractional-order operators have been applied to modeling viscoelastic behavior for many years, and recent research has shown fractional-order methods to be effective for nonlinear frameworks. This implementation can become computationally expensive to achieve an accurate approximation of the fractional-order derivative. Accurate estimation of the elastomer’s viscoelastic behavior to quantify parameter uncertainty motivates the use of Markov Chain Monte Carlo (MCMC) methods. Since MCMC is a sampling based method, requiring many model evaluations, efficient estimation of the fractional derivative operator is crucial. In this paper, we demonstrate the effectiveness of using quadrature techniques to approximate the Riemann–Liouville definition for fractional derivatives in the context of estimating the uncertainty of a nonlinear viscoelastic model. We also demonstrate the use of parameter subset selection techniques to isolate parameters that are identifiable in the sense that they are uniquely determined by measured data. For those identifiable parameters, we employ Bayesian inference to compute posterior distributions for parameters. Finally, we propagate parameter uncertainties through the models to compute prediction intervals for quantities of interest.more » « less
-
Automatic differentiation (AD), a technique for constructing new programs which compute the derivative of an original program, has become ubiquitous throughout scientific computing and deep learning due to the improved performance afforded by gradient-based optimization. However, AD systems have been restricted to the subset of programs that have a continuous dependence on parameters. Programs that have discrete stochastic behaviors governed by distribution parameters, such as flipping a coin with probability p of being heads, pose a challenge to these systems because the connection between the result (heads vs tails) and the parameters ( p ) is fundamentally discrete. In this paper we develop a new reparameterization-based methodology that allows for generating programs whose expectation is the derivative of the expectation of the original program. We showcase how this method gives an unbiased and low-variance estimator which is as automated as traditional AD mechanisms. We demonstrate unbiased forward-mode AD of discrete-time Markov chains, agent-based models such as Conway's Game of Life, and unbiased reverse-mode AD of a particle filter. Our code package is available at https://github.com/gaurav-arya/StochasticAD.jl.more » « less
-
Abstract Continuous-time Markov chains are frequently used as stochastic models for chemical reaction networks, especially in the growing field of systems biology. A fundamental problem for these Stochastic Chemical Reaction Networks (SCRNs) is to understand the dependence of the stochastic behavior of these systems on the chemical reaction rate parameters. Towards solving this problem, in this paper we develop theoretical tools called comparison theorems that provide stochastic ordering results for SCRNs. These theorems give sufficient conditions for monotonic dependence on parameters in these network models, which allow us to obtain, under suitable conditions, information about transient and steady-state behavior. These theorems exploit structural properties of SCRNs, beyond those of general continuous-time Markov chains. Furthermore, we derive two theorems to compare stationary distributions and mean first passage times for SCRNs with different parameter values, or with the same parameters and different initial conditions. These tools are developed for SCRNs taking values in a generic (finite or countably infinite) state space and can also be applied for non-mass-action kinetics models. When propensity functions are bounded, our method of proof gives an explicit method for coupling two comparable SCRNs, which can be used to simultaneously simulate their sample paths in a comparable manner. We illustrate our results with applications to models of enzymatic kinetics and epigenetic regulation by chromatin modifications.more » « less
An official website of the United States government

