skip to main content
US FlagAn official website of the United States government
dot gov icon
Official websites use .gov
A .gov website belongs to an official government organization in the United States.
https lock icon
Secure .gov websites use HTTPS
A lock ( lock ) or https:// means you've safely connected to the .gov website. Share sensitive information only on official, secure websites.


Title: Online Reinforcement Learning-Based Pedagogical Planning for Narrative-Centered Learning Environments
Pedagogical planners can provide adaptive support to students in narrative-centered learning environments by dynamically scaffolding student learning and tailoring problem scenarios. Reinforcement learning (RL) is frequently used for pedagogical planning in narrative-centered learning environments. However, RL-based pedagogical planning raises significant challenges due to the scarcity of data for training RL policies. Most prior work has relied on limited-size datasets and offline RL techniques for policy learning. Unfortunately, offline RL techniques do not support on-demand exploration and evaluation, which can adversely impact the quality of induced policies. To address the limitation of data scarcity and offline RL, we propose INSIGHT, an online RL framework for training data-driven pedagogical policies that optimize student learning in narrative-centered learning environments. The INSIGHT framework consists of three components: a narrative-centered learning environment simulator, a simulated student agent, and an RL-based pedagogical planner agent, which uses a reward metric that is associated with effective student learning processes. The framework enables the generation of synthetic data for on-demand exploration and evaluation of RL-based pedagogical planning. We have implemented INSIGHT with OpenAI Gym for a narrative-centered learning environment testbed with rule-based simulated student agents and a deep Q-learning-based pedagogical planner. Our results show that online deep RL algorithms can induce near-optimal pedagogical policies in the INSIGHT framework, while offline deep RL algorithms only find suboptimal policies even with large amounts of data.  more » « less
Award ID(s):
2112635
PAR ID:
10500508
Author(s) / Creator(s):
; ; ; ;
Publisher / Repository:
AAAI
Date Published:
Journal Name:
Proceedings of the AAAI Conference on Artificial Intelligence
Volume:
38
Issue:
21
ISSN:
2159-5399
Page Range / eLocation ID:
23191 to 23199
Format(s):
Medium: X
Sponsoring Org:
National Science Foundation
More Like this
  1. Recent successes of Reinforcement Learning (RL) allow an agent to learn policies that surpass human experts but suffers from being time-hungry and data-hungry. By contrast, human learning is significantly faster because prior and general knowledge and multiple information resources are utilized. In this paper, we propose a Planner-Actor-Critic architecture for huMAN-centered planning and learning (PACMAN), where an agent uses its prior, high-level, deterministic symbolic knowledge to plan for goal-directed actions, and also integrates the Actor-Critic algorithm of RL to fine-tune its behavior towards both environmental rewards and human feedback. This work is the first unified framework where knowledge-based planning, RL, and human teaching jointly contribute to the policy learning of an agent. Our experiments demonstrate that PACMAN leads to a significant jump-start at the early stage of learning, converges rapidly and with small variance, and is robust to inconsistent, infrequent, and misleading feedback. 
    more » « less
  2. This work provides a framework for a workspace aware online grasp planner. This framework greatly improves the performance of standard online grasp planning algorithms by incorporating a notion of reachability into the online grasp planning process. Offline, a database of hundreds of thousands of unique end-effector poses were queried for feasibility. At runtime, our grasp planner uses this database to bias the hand towards reachable end-effector configurations. The bias keeps the grasp planner in accessible regions of the planning scene so that the resulting grasps are tailored to the situation at hand. This results in a higher percentage of reachable grasps, a higher percentage of successful grasp executions, and a reduced planning time. We also present experimental results using simulated and real environments. 
    more » « less
  3. Reinforcement learning (RL) is broadly employed in humaninvolved systems to enhance human outcomes. Off-policy evaluation (OPE) has been pivotal for RL in those realms since online policy learning and evaluation can be high-stake. Intelligent tutoring has raised tremendous attentions as highly challenging when applying OPE to human-involved systems, due to that students’ subgroups can favor different pedagogical policies and the costly procedure that policies have to be induced fully offline and then directly deployed to the upcoming semester. In this work, we formulate on-demand pedagogical policy selection (ODPS) to tackle the challenges for OPE in intelligent tutoring. We propose a pipeline, EDUPLANNER, as a concrete solution for ODPS. Our pipeline results in an theoretically unbiased estimator, and enables efficient and customized policy selection by identifying subgroups over both historical data and on-arrival initial logs. We evaluate our approach on the Probability ITS that has been used in real classrooms for over eight years. Our study shows significant improvement on learning outcomes of students with EDUPLANNER, especially for the ones associated with low-performing subgroups. 
    more » « less
  4. Reinforcement learning (RL) in low-data and risk-sensitive domains requires performant and flexible deployment policies that can readily incorporate constraints during deployment. One such class of policies are the semi-parametric H-step lookahead policies, which select actions using trajectory optimization over a dynamics model for a fixed horizon with a terminal value function. In this work, we investigate a novel instantiation of H-step lookahead with a learned model and a terminal value function learned by a model-free off-policy algorithm, named Learning Off-Policy with Online Planning (LOOP). We provide a theoretical analysis of this method, suggesting a tradeoff between model errors and value function errors and empirically demonstrate this tradeoff to be beneficial in deep reinforcement learning. Furthermore, we identify the "Actor Divergence" issue in this framework and propose Actor Regularized Control (ARC), a modified trajectory optimization procedure. We evaluate our method on a set of robotic tasks for Offline and Online RL and demonstrate improved performance. We also show the flexibility of LOOP to incorporate safety constraints during deployment with a set of navigation environments. We demonstrate that LOOP is a desirable framework for robotics applications based on its strong performance in various important RL settings. 
    more » « less
  5. In offline reinforcement learning (RL), the goal is to learn a highly rewarding policy based solely on a dataset of historical interactions with the environment. The ability to train RL policies offline would greatly expand where RL can be applied, its data efficiency, and its experimental velocity. Prior work in offline RL has been confined almost exclusively to model-free RL approaches. In this work, we present MOReL, an algorithmic framework for model-based offline RL. This framework consists of two steps: (a) learning a pessimistic MDP (P-MDP) using the offline dataset; (b) learning a near-optimal policy in this P-MDP. The learned P-MDP has the property that for any policy, the performance in the real environment is approximately lower-bounded by the performance in the P-MDP. This enables it to serve as a good surrogate for purposes of policy evaluation and learning, and overcome common pitfalls of model-based RL like model exploitation. Theoretically, we show that MOReL is minimax optimal (up to log factors) for offline RL. Through experiments, we show that MOReL matches or exceeds state-of-the-art results in widely studied offline RL benchmarks. Moreover, the modular design of MOReL enables future advances in its components (e.g., in model learning, planning etc.) to directly translate into improvements for offline RL. 
    more » « less