skip to main content
US FlagAn official website of the United States government
dot gov icon
Official websites use .gov
A .gov website belongs to an official government organization in the United States.
https lock icon
Secure .gov websites use HTTPS
A lock ( lock ) or https:// means you've safely connected to the .gov website. Share sensitive information only on official, secure websites.


Title: Lotic‐SIPCO2 : Adaptation of an open‐source CO2 sensor system and examination of associated emission uncertainties across a range of stream sizes and land uses
Abstract River networks play a crucial role in the global carbon cycle, as relevant sources of carbon dioxide (CO2) to the atmosphere. Advancements in high‐frequency monitoring in aquatic environments have enabled measurement of dissolved CO2concentration at temporal resolutions essential for studying carbon variability and evasion from these dynamic ecosystems. Here, we describe the adaptation, deployment, and validation of an open‐source and relatively low‐cost in situpCO2sensor system for lotic ecosystems, the lotic‐SIPCO2. We tested the lotic‐SIPCO2 in 10 streams that spanned a range of land cover and basin size. Key system adaptations for lotic environments included prevention of biofouling, configuration for variable stage height, and reduction of headspace equilibration time. We then examined which input parameters contribute the most to uncertainty in estimating CO2emission rates and found scaling factors related to the gas exchange velocity were the most influential when CO2concentration was significantly above saturation. Near saturation, sensor measurement ofpCO2contributed most to uncertainty in estimating CO2emissions. We also found high‐frequency measurements ofpCO2were not necessary to accurately estimate median emission rates given the CO2regimes of our streams, but daily to weekly sampling was sufficient. High‐frequency measurements ofpCO2remain valuable for exploring in‐stream metabolic variability, source partitioning, and storm event dynamics. Our adaptations to the SIPCO2 offer a relatively affordable and robust means of monitoring dissolved CO2in lotic ecosystems. Our findings demonstrate priorities and related considerations in the design of monitoring projects of dissolved CO2and CO2evasion dynamics more broadly.  more » « less
Award ID(s):
2224608 1926423 1926591 2215300 1637630
PAR ID:
10501075
Author(s) / Creator(s):
 ;  ;  ;  ;  ;  ;  
Publisher / Repository:
Wiley Blackwell (John Wiley & Sons)
Date Published:
Journal Name:
Limnology and Oceanography: Methods
Volume:
22
Issue:
4
ISSN:
1541-5856
Format(s):
Medium: X Size: p. 191-207
Size(s):
p. 191-207
Sponsoring Org:
National Science Foundation
More Like this
  1. Abstract In 2021, the Ocean Thematic Centre of the European Research Infrastructure “Integrated Carbon Observation System” conducted an international partial pressure of carbon dioxide (pCO2) instrument intercomparison. The goal was to understand how different types of instrumentation for the measurement of oceanpCO2compare to each other. During the two‐week long experiment, we installed various instruments in a tank facility using natural sea water (North Sea). These included direct air–water equilibration systems and membrane‐based flow‐through instruments along with submersible sensors and instruments that are normally installed on buoys and autonomous surface vehicles. In situ instruments were installed inside the tank and the flow‐through instruments were fed the same water using a pumping system. We changed the temperature (between 10°C and 28°C) and the seawaterpCO2(between 250 and 800μatm) to observe instrument responses over a wide range. Since there is no reference for surface oceanpCO2measurements, we agreed on a set of instruments serving as intercomparison reference. All data from the different instruments were then compared against the intercomparison reference during periods of stable temperature andpCO2. The study provides important information to enhance future ocean carbon monitoring networks, but makes no direct recommendation for the use of any specific sensor. A major finding is that equilibration through direct air–water contact appears to be more consistent and independent of external factors than equilibration through a membrane or photometric detection. We found several instruments with no temperature measurements at the location of equilibration or with uncalibrated temperature sensors introducing significant uncertainty in the results. 
    more » « less
  2. Abstract Stream fluxes are commonly reported without a complete accounting for uncertainty in the estimates, which makes it difficult to evaluate the significance of findings or to identify where to direct efforts to improve monitoring programs. At the Hubbard Brook Experimental Forest in the White Mountains of New Hampshire, USA, stream flow has been monitored continuously and solute concentrations have been sampled approximately weekly in small, gaged headwater streams since 1963, yet comprehensive uncertainty analyses have not been reported. We propagated uncertainty in the stage height–discharge relationship, watershed area, analytical chemistry, the concentration–discharge relationship used to interpolate solute concentrations, and the streamflow gap‐filling procedure to estimate uncertainty for both streamflow and solute fluxes for a recent 6‐year period (2013–2018) using a Monte Carlo approach. As a percentage of solute fluxes, uncertainty was highest for NH4+(34%), total dissolved nitrogen (8.8%), NO3(8.1%), and K+(7.4%), and lowest for dissolved organic carbon (3.7%), SO42−(4.0%), and Mg2+(4.4%). In units of flux, uncertainties were highest for solutes in highest concentration (Si, DOC, SO42−, and Na+) and lowest for those lowest in concentration (H+and NH4+). Laboratory analysis of solute concentration was a greater source of uncertainty than streamflow for solute flux, with the exception of DOC. Our results suggest that uncertainty in solute fluxes could be reduced with more precise measurements of solute concentrations. Additionally, more discharge measurements during high flows are needed to better characterize the stage‐discharge relationship. Quantifying uncertainty in streamflow and element export is important because it allows for determination of significance of differences in fluxes, which can be used to assess watershed response to disturbance and environmental change. 
    more » « less
  3. Abstract Inland waters are an important component of the global carbon budget. However, our ability to predict carbon fluxes from stream systems remains uncertain, aspCO2varies within streams at scales of 1–100 m. This makes direct monitoring of large‐scale CO2fluxes impractical. We incorporate CO2input and output fluxes into a stream network advection‐reaction model, representing the first process‐based representation of stream CO2dynamics at watershed scales. This model includes groundwater (GW) CO2inputs, water column (WC), benthic hyporheic zone (BHZ) respiration, downstream advection, and atmospheric exchange. We evaluate this model against existing statistical methods including upscaling and multiple linear regressions through comparisons to high‐resolution streampCO2data collected across the East River Watershed in the Colorado Rocky Mountains (USA). The stream network model accurately captures GW, evasion, and respiration‐drivenpCO2variability and significantly outperforms multiple linear regressions for predictingpCO2. Further, the model provides estimates of CO2contributions from internal versus external sources suggesting that streams transition from GW‐ to BHZ‐dominated sources between 3rd and 4th Strahler orders, with GW, BHZ, and WC accounting for 49.3%, 50.6%, and 0.1% of CO2fluxes from the watershed, respectively. Lastly, stream network model atmospheric CO2fluxes are 4‐12x times smaller than upscaling technique predictions, largely due to relationships between streampCO2and gas exchange velocities. Taken together, this stream network model improves our ability to predict stream CO2dynamics and efflux. Furthermore, future applications to regional and global scales may result in a significant downward revision of global flux estimates. 
    more » « less
  4. ABSTRACT To better understand linkages between hydrology and ecosystem carbon flux in northern aquatic ecosystems, we evaluated the relationship between plant communities, biofilm development, and carbon dioxide (CO2) exchange following long‐term changes in hydrology in an Alaskan fen. We quantified seasonal variation in biofilm composition and CO2exchange in response to lowered and raised water table position (relative to a control) during years with varying levels of background dissolved organic carbon (DOC). We then used nutrient‐diffusing substrates (NDS) to evaluate cause–effect relationships between changes in plant subsidies (i.e., leachates) and biofilm composition among water table treatments. We found that background DOC concentration determined whether plant subsidies promoted net autotrophy or heterotrophy on NDS. In conditions where background DOC was ≤ 40 mg L−1, plant subsidies promoted an autotrophic biofilm. Conversely, when background DOC concentration was ≥ 50 mg L−1, plant subsidies promoted heterotrophy. Greater light attenuation associated with elevated levels of DOC may have overwhelmed the stimulatory effect of nutrients on autotrophic microbes by constraining photosynthesis while simultaneously allowing heterotrophs to outcompete autotrophs for available nutrients. At the ecosystem level, conditions that favored an autotrophic biofilm resulted in net CO2uptake among all water table treatments, whereas the site was a net source of CO2to the atmosphere in conditions that supported greater heterotrophy. Taken together, these findings show that hydrologic history interacts with changes in dominant plant functional groups to alter biofilm composition, which has consequences for ecosystem CO2exchange. 
    more » « less
  5. Abstract Streams in high‐elevation tropical ecosystems known as páramos may be significant sources of carbon dioxide (CO2) to the atmosphere by transforming terrestrial carbon to gaseous CO2. Studies of these environments are scarce, and estimates of CO2fluxes are poorly constrained. In this study, we use two independent methods for measuring gas transfer velocity (k), a critical variable in the estimation of CO2evasion and other biogeochemical processes. The first method, kinematick600(k600‐K), is derived from an empirical relationship between temperature‐adjustedk(k600) and the physical characteristics of the stream. The second method, measuredk600(k600‐M), estimates gas transfer velocity in the stream by in situ measurements of dissolved CO2(pCO2) and CO2evasion to the atmosphere, adjusting for temperature. Measurements were collected throughout a 5‐week period during the wet season of a peatland‐stream transition within a páramo ecosystem located above 4000 m in elevation in northeastern Ecuador. We characterized the spatial heterogeneity of the 250‐m reach on five occasions, and both methods showed a wide range of variability ink600at small spatial scales. Values ofk600‐Kranged from 7.42 to 330 m/d (mean = 116 ± 95.1 m/d), whereas values ofk600‐Mranged from 23.5 to 444 m/d (mean = 121 ± 127 m/d). Temporal variability ink600was driven by increases in stream discharge caused by rain events, whereas spatial variability was driven by channel morphology, including stream width and slope. The two methods were in good agreement (less than 16% difference) at high and medium stream discharge (above 7.0 L/s). However, the two methods considerably differed from one another (up to 73% difference) at low stream discharge (below 7.0 L/s, which represents 60% of the observations collected). Our study provides the first estimates ofk600values in a high‐elevation tropical catchment across steep environmental gradients and highlights the combined effects of hydrology and stream morphology in co‐regulating gas transfer velocities in páramo streams. 
    more » « less