skip to main content


Title: Project-Based Software Engineering Curriculum for Secondary Students
Background. Software Engineering (SE) is a new and emerging topic in secondary computer science classrooms. However, a review of the recent literature has identified an overall lack of reporting on the development of SE secondary curriculum. Previous studies also report low student engagement when teaching these concepts. Objectives. In this experience report, we discuss the development of a 9-week, project-based learning (PBL) SE curriculum for secondary students. During this curriculum, students create a socially relevant project in groups of two to three. We discuss displays of participant engagement with CS concepts through the PBL pedagogy and the SE curriculum. Method. We examine participant engagement through group artifact interviews about student experiences during a week-long, virtual summer camp that piloted activities from our curriculum. During this camp, students followed a modified SE life cycle created by the authors of the paper. Findings. Participants showed engagement with the curriculum through various aspects of PBL, such as autonomy, creativity, and personal interest in their project topic. Implications. The lessons learned from this experience report suggest that PBL pedagogy can increase student engagement when teaching CS concepts, and this pedagogy provides detail and structure for future secondary SE curriculum implementations to support educators in the classroom  more » « less
Award ID(s):
1949472 1949492
PAR ID:
10501474
Author(s) / Creator(s):
; ; ; ; ; ;
Publisher / Repository:
ACM
Date Published:
Journal Name:
Proceedings of the 18th WiPSCE Conference on Primary and Secondary Computing Education Research
ISBN:
9798400708510
Page Range / eLocation ID:
1 to 6
Format(s):
Medium: X
Location:
Cambridge United Kingdom
Sponsoring Org:
National Science Foundation
More Like this
  1. Historically, female students have shown low interest in the field of computer science. Previous computer science curricula have failed to address the lack of female-centered computer science activities, such as socially relevant and real-life applications. Our new summer camp curriculum introduces the topics of artificial intelligence (AI), machine learning (ML) and other real-world subjects to engage high school girls in computing by connecting lessons to relevant and cutting edge technologies. Topics range from social media bots, sentiment of natural language in different media, and the role of AI in criminal justice, and focus on programming activities in the NetsBlox and Python programming languages. Summer camp teachers were prepared in a week-long pedagogy and peer-teaching centered professional development program where they concurrently learned and practiced teaching the curriculum to one another. Then, pairs of teachers led students in learning through hands-on AI and ML activities in a half-day, two-week summer camp. In this paper, we discuss the curriculum development and implementation, as well as survey feedback from both teachers and students. 
    more » « less
  2. Teacher self-efficacy (SE) has been observed to be an 'important construct for Computer Science (CS) teachers' professional development because it can predict both teaching behaviors as well as student outcomes" [1]. The purpose of the present study was to investigate teacher CS SE during a two-year federally funded professional development (PD) and curriculum development project for middle school teachers incorporating game-design and the Unity development platform. The research question investigated is: How does teacher self-efficacy for teaching computer science via game design with the Unity game development platform change during a year-long PD program? Investigations of teacher SE for teaching CS have resulted in some surprising results. For example, it has been reported that - There were no differences in self-efficacy based on teachers' overall level of experience, despite previous findings that teacher self-efficacy is related to amount of experience" and "no differences in self-efficacy related to the teachers' own level of experience with CS" [2], thus further study of CS teacher SE is warranted. Participants in this study were six middle school teachers from four middle schools in the southeastern United States. They participated in a year-long PD program learning the Unity game development platform, elements of game design, and foundations of learner motivation. Guided reflective journaling was used to track the teachers' SE during the first year of the project. Teachers completed journal prompts at four intervals. Prompts consisted of questions like "How do you currently feel about your ability to facilitate student learning with Unity?" and "Are you confident that you can implement the materials the way the project team has planned for them to be implemented?" Prior to beginning the project participants expressed confidence in being able to facilitate student learning after participating in the planned professional development, but there was some uneasiness about learning and using Unity. From a SE perspective their responses make sense, as all of the participants are experienced teachers and should have confidence in their general ability to teach. However, since Unity is a new programming environment for all of the teachers, they did not have the prior experience necessary to have a high degree of confidence that they could successfully use it with their students. 
    more » « less
  3. The Adapt, Implement, and Research at Nebraska (AIR@NE) project, funded by the NSF CSforAll Researcher-Practitioner Partnership (RPP) program, examines the adaptation of a validated K-8 Computer Science (CS) curriculum in diverse school districts statewide. Our Research-Practitioner Partnership is primarily between the University of Nebraska-Lincoln, the Lincoln Public Schools, and other diverse school districts across Nebraska. Our primary goal is to study and document how different districts, including rural, predominantly minority, and Native American reservation, adopt the curriculum and broaden participation in CS. In addition, the project is developing instructional capacity for K-8 CS education with diverse learners. Our research also adapts and develops teacher and student CS assessments, and documents case studies using design-based research methodology to show how an adaptive curriculum broadens CS participation. Our Professional Development (PD) program for K-8 CS teachers is comprehensive. It consists of three summer courses for each cohort and a series of workshops during the academic year. Of the three summer courses, two are administered in the first year for a cohort: (1) an introduction to computer science course where teachers learn fundamental CS topics and programming in a high-level programming language (e.g., Python), and engage in problem solving and practice computational thinking, and (2) a course in pedagogy for teachers to learn how to teach K-8 CS, including lesson designs, use of instructional resources such as dot-and-dash robots, and assessments. Then, the following academic year after the summer, the PD program holds a series of workshops on five separate Saturdays to support teacher implementation of their lesson modules during the academic year, reflect and improve on their lessons, reinforce on CS concepts and pedagogy techniques, review and adopt alternative instructional resources, and share insights. These Saturday workshops also facilitate further community building and resource sharing. The third course occurs in the second year for a cohort, involving dissemination of research results from the team to the teachers, opportunities to discuss new resources and approaches on teaching CS concepts and computational thinking, and sharing of experiences and insights after teachers have completed one academic year of teaching CS. Unlike the first two courses that are required of teachers, this third course is an opt-in course that combines more in- depth pedagogy and elements of leadership. Thus far, we have had two cohorts and used the design methodology to revise our PD program, making our design more robust based on the lessons learned over the two years. The course materials, assessment, and survey instruments have also been improved. While the project is on-going we have data to that indicates the impact of the work so far. There were significant pre-post gains for both cohorts in teachers’ knowledge of computer science concepts and computational thinking. Scores on the computational thinking assessment were higher than those for CS concepts, which was to be expected given their CS teaching experience. Moreover, in both cohorts, the teachers’ confidence in teaching CS improved significantly. 
    more » « less
  4. null (Ed.)
    To meet the rising demand for computer science (CS) courses, K-12 educators need to be prepared to teach introductory concepts and skills in courses such as Computer Science Principles (CSP), which takes a breadth-first approach to CS and includes topics beyond programming such as data, impacts of computing, and networks. Educators are now also being asked to teach more advanced concepts in courses such as the College Board's Advanced Placement Computer Science A (CSA) course, which focuses on advanced programming using Java and includes topics such as objects, inheritance, arrays, and recursion. Traditional CSA curricula have not used content or pedagogy designed to engage a broad range of learners and support their success. Unlike CSP, which is attracting more underrepresented students to computing as it was designed, CSA continues to enroll mostly male, white, and Asian students [College Board 2019, Ericson 2020, Sax 2020]. In order to expand CS education opportunities, it is crucial that students have an engaging experience in CSA similar to CSP. Well-designed differentiated professional development (PD) that focuses on content and pedagogy is necessary to meet individual teacher needs, to successfully build teacher skills and confidence to teach CSA, and to improve engagement with students [Darling-Hammond 2017]. It is critical that as more CS opportunities and courses are developed, teachers remain engaged with their own learning in order to build their content knowledge and refine their teaching practice [CSTA 2020]. CSAwesome, developed and piloted in 2019, offers a College Board endorsed AP CSA curriculum and PD focused on supporting the transition of teachers and students from CSP to CSA. This poster presents preliminary findings aimed at exploring the supports and challenges new-to-CSA high school level educators face when transitioning from teaching an introductory, breadth-first course such as CSP to teaching the more challenging, programming-focused CSA course. Five teachers who completed the online CSAwesome summer 2020 PD completed interviews in spring 2021. The project employed an inductive coding scheme to analyze interview transcriptions and qualitative notes from teachers about their experiences learning, teaching, and implementing CSP and CSA curricula. Initial findings suggest that teachers’ experience in the CSAwesome PD may improve their confidence in teaching CSA, ability to effectively use inclusive teaching practices, ability to empathize with their students, problem-solving skills, and motivation to persist when faced with challenges and difficulties. Teachers noted how the CSAwesome PD provided them with a student perspective and increased feelings of empathy. Participants spoke about the implications of the COVID-19 pandemic on their own learning, student learning, and teaching style. Teachers enter the PD with many different backgrounds, CS experience levels, and strengths, however, new-to-CSA teachers require further PD on content and pedagogy to transition between CSP and CSA. Initial results suggest that the CSAwesome PD may have an impact on long-term teacher development as new-to-CSA teachers who participated indicated a positive impact on their teaching practices, ideologies, and pedagogies. 
    more » « less
  5. Due to COVID-19, engineering summer camps offered by North Carolina State University (NCSU) shifted to a virtual format for the summer of 2021 and required a new curriculum to be designed with an emphasis on providing a hands-on experience in a virtual environment. The Department of Mechanical and Aerospace Engineering created a curriculum which included some hands-on activities used in previous, in-person camps, a homebuilt wind tunnel used to demonstrate aerospace fundamentals, and a popular engineering game used as a teaching tool to explain astronautics concepts. Each week-long camp was conducted via Zoom and led by a team consisting of a NCSU graduate student, three undergraduate students, and a faculty advisor. Anonymous student feedback following the completion of the camps showed overwhelmingly positive results with a majority of students showing interest in pursuing an engineering degree with multiple students expressing interest in attending NCSU 
    more » « less