skip to main content
US FlagAn official website of the United States government
dot gov icon
Official websites use .gov
A .gov website belongs to an official government organization in the United States.
https lock icon
Secure .gov websites use HTTPS
A lock ( lock ) or https:// means you've safely connected to the .gov website. Share sensitive information only on official, secure websites.


Title: Neutrino-driven Outflows and the Elemental Abundance Patterns of Very Metal-poor Stars
Abstract The elemental abundances between strontium and silver (Z= 38–47) observed in the atmospheres of very metal-poor stars in the Galaxy may contain the fingerprint of the weakr-process andνp-process occurring in early core-collapse supernovae explosions. In this work, we combine various astrophysical conditions based on a steady-state model to cover the richness of the supernova ejecta in terms of entropy, expansion timescale, and electron fraction. The calculated abundances based on different combinations of conditions are compared with stellar observations, with the aim of constraining supernova ejecta conditions. We find that some conditions of the neutrino-driven outflows consistently reproduce the observed abundances of our sample. In addition, from the successful combinations, the neutron-rich trajectories better reproduce the observed abundances of Sr–Zr (Z= 38–40), while the proton-rich ones, Mo–Pd (Z= 42–47).  more » « less
Award ID(s):
2209429 1927130
PAR ID:
10501809
Author(s) / Creator(s):
; ; ; ; ;
Publisher / Repository:
DOI PREFIX: 10.3847
Date Published:
Journal Name:
The Astrophysical Journal
Volume:
966
Issue:
1
ISSN:
0004-637X
Format(s):
Medium: X Size: Article No. 11
Size(s):
Article No. 11
Sponsoring Org:
National Science Foundation
More Like this
  1. Abstract The spectra of several galaxies, including extremely metal-poor galaxies from EMPRESS, have shown that the abundances of some Si-group elements differ from “spherical” explosion models of massive stars. This leads to the speculation that these galaxies have experienced supernova explosions with high asphericity, where mixing and fallback of the inner ejecta with the outer material lead to the distinctive chemical compositions. In this paper, we consider the jet-driven supernova models by direct 2D hydrodynamics simulations using progenitors of about 20–25Mat zero metallicity. We investigate how the abundance patterns depend on the progenitor mass, mass cut, and asphericity of the explosion. We compare the observable with available supernova and galaxy catalogs based on56Ni, ejecta mass, and individual element ratios. The proximity of our results with the observational data signifies the importance of aspherical supernova explosions in chemical evolution of these galaxies. Our models will provide the theoretical counterpart for understanding the chemical abundances of high-zgalaxies measured by the James Webb Space Telescope. 
    more » « less
  2. The heaviest chemical elements are naturally produced by the rapid neutron-capture process (r-process) during neutron star mergers or supernovae. Ther-process production of elements heavier than uranium (transuranic nuclei) is poorly understood and inaccessible to experiments so must be extrapolated by using nucleosynthesis models. We examined element abundances in a sample of stars that are enhanced inr-process elements. The abundances of elements ruthenium, rhodium, palladium, and silver (atomic numbersZ= 44 to 47; mass numbersA= 99 to 110) correlate with those of heavier elements (63 ≤Z≤ 78,A> 150). There is no correlation for neighboring elements (34 ≤Z≤ 42 and 48 ≤Z≤ 62). We interpret this as evidence that fission fragments of transuranic nuclei contribute to the abundances. Our results indicate that neutron-rich nuclei with mass numbers >260 are produced inr-process events. 
    more » « less
  3. Abstract A promising astrophysical site to produce the lighter heavy elements of the first r -process peak ( Z = 38 − 47) is the moderately neutron-rich (0.4 < Y e < 0.5) neutrino-driven ejecta of explosive environments, such as core-collapse supernovae and neutron star mergers, where the weak r -process operates. This nucleosynthesis exhibits uncertainties from the absence of experimental data from ( α , xn ) reactions on neutron-rich nuclei, which are currently based on statistical model estimates. In this work, we report on a new study of the nuclear reaction impact using a Monte Carlo approach and improved ( α , xn ) rates based on the Atomki-V2 α optical model potential. We compare our results with observations from an up-to-date list of metal-poor stars with [Fe/H] < −1.5 to find conditions of the neutrino-driven wind where the lighter heavy elements can be synthesized. We identified a list of ( α , xn ) reaction rates that affect key elemental ratios in different astrophysical conditions. Our study aims to motivate more nuclear physics experiments on ( α , xn ) reactions using the current and new generation of radioactive beam facilities and also more observational studies of metal-poor stars. 
    more » « less
  4. Abstract We present new observational benchmarks of rapid neutron-capture process (r-process) nucleosynthesis for elements at and between the first (A∼ 80) and second (A∼ 130) peaks. Our analysis is based on archival ultraviolet and optical spectroscopy of eight metal-poor stars with Se (Z= 34) or Te (Z= 52) detections, whoser-process enhancement varies by more than a factor of 30 (−0.22 ≤ [Eu/Fe] ≤ +1.32). We calculate ratios among the abundances of Se, Sr through Mo (38 ≤Z≤ 42), and Te. These benchmarks may offer a new empirical alternative to the predicted solar systemr-process residual pattern. The Te abundances in these stars correlate more closely with the lighterr-process elements than the heavier ones, contradicting and superseding previous findings. The small star-to-star dispersion among the abundances of Se, Sr, Y, Zr, Nb, Mo, and Te (≤0.13 dex, or 26%) matches that observed among the abundances of the lanthanides and thirdr-process-peak elements. The concept ofr-process universality that is recognized among the lanthanide and third-peak elements inr-process-enhanced stars may also apply to Se, Sr, Y, Zr, Nb, Mo, and Te, provided the overall abundances of the lighterr-process elements are scaled independently of the heavier ones. The abundance behavior of the elements Ru through Sn (44 ≤Z≤ 50) requires further study. Our results suggest that at least one relatively common source in the early Universe produced a consistent abundance pattern among some elements spanning the first and secondr-process peaks. 
    more » « less
  5. ABSTRACT Certain types of silicon carbide (SiC) grains, e.g. SiC-X grains, and low density (LD) graphites are C-rich presolar grains that are thought to have condensed in the ejecta of core-collapse supernovae (CCSNe). In this work, we compare C, N, Al, Si, and Ti isotopic abundances measured in presolar grains with the predictions of 21 CCSN models. The impact of a range of SN explosion energies is considered, with the high energy models favouring the formation of a C/Si zone enriched in 12C, 28Si, and 44Ti. Eighteen of the 21 models have H ingested into the He-shell and different abundances of H remaining from such H-ingestion. CCSN models with intermediate to low energy (that do not develop a C/Si zone) cannot reproduce the 28Si and 44Ti isotopic abundances in grains without assuming mixing with O-rich CCSN ejecta. The most 28Si-rich grains are reproduced by energetic models when material from the C/Si zone is mixed with surrounding C-rich material, and the observed trends of the 44Ti/48Ti and 49Ti/48Ti ratios are consistent with the C-rich C/Si zone. For the models with H-ingestion, high and intermediate explosion energies allow the production of enough 26Al to reproduce the 26Al/27Al measurements of most SiC-X and LD graphites. In both cases, the highest 26Al/27Al ratio is obtained with H still present at XH ≈ 0.0024 in He-shell material when the SN shock is passing. The existence of H in the former convective He-shell points to late H-ingestion events in the last days before massive stars explode as a supernova. 
    more » « less