A colloidal motor driven by surface tension forces is theoretically designed by encapsulating an active Janus particle in a liquid drop which is immiscible in the suspending medium. The Janus particle produces an asymmetric flux of a solute species which induces surface tension gradients along the liquid–liquid interface between the drop and the surrounding fluid. The resulting Marangoni forces at the interface propel the compound drop/Janus particle system. The propulsion speeds of the motor are evaluated for a range of relative sizes and positions of the drop and the particle and across a range of transport properties of the drop and the suspending medium. It is demonstrated that the proposed design can produce higher propulsion velocities than the traditional Janus-particle-based colloidal motors propelled by neutral diffusiophoresis.
more »
« less
Magneto-capillary particle dynamics at curved interfaces: inference and criticism of dynamical models
Time-varying fields drive the motion of magnetic particles adsorbed on liquid drops due to interfacial constraints that couple magnetic torques to capillary forces. Such magneto-capillary particle dynamics and the associated fluid flows are potentially useful for propelling drop motion, mixing drop contents, and enhancing mass transfer between phases. The design of such functions benefits from the development and validation of predictive models. Here, we apply methods of Bayesian data analysis to identify and validate a dynamical model that accurately predicts the field-driven motion of a magnetic particle adsorbed at the interface of a spherical droplet. Building on previous work, we consider candidate models that describe particle tilting at the interface, field-dependent contributions to the magnetic moment, gravitational forces, and their combinations. The analysis of each candidate is informed by particle tracking data for a magnetic Janus sphere moving in a precessing field at different frequencies and angles. We infer the uncertain parameters of each model, criticize their ability to describe and predict experimental data, and select the most probable candidate, which accounts for gravitational forces and the tilting of the Janus sphere at the interface. We show how this favored model can predict complex particle trajectories with micron-level accuracy across the range of driving fields considered. We discuss how knowledge of this “best” model can be used to design experiments that inform accurate parameter estimates or achieve desired particle trajectories.
more »
« less
- Award ID(s):
- 1935228
- PAR ID:
- 10502007
- Publisher / Repository:
- RSC
- Date Published:
- Journal Name:
- Soft Matter
- Volume:
- 19
- Issue:
- 46
- ISSN:
- 1744-683X
- Page Range / eLocation ID:
- 9017 to 9026
- Format(s):
- Medium: X
- Sponsoring Org:
- National Science Foundation
More Like this
-
-
The long-ranged interactions induced by magnetic fields and capillary forces in multiphasic fluid–particle systems facilitate the assembly of a rich variety of colloidal structures and materials. We review here the diverse structures assembled from isotropic and anisotropic particles by independently or jointly using magnetic and capillary interactions. The use of magnetic fields is one of the most efficient means of assembling and manipulating paramagnetic particles. By tuning the field strength and configuration or by changing the particle characteristics, the magnetic interactions, dynamics, and responsiveness of the assemblies can be precisely controlled. Concurrently, the capillary forces originating at the fluid–fluid interfaces can serve as means of reconfigurable binding in soft matter systems, such as Pickering emulsions, novel responsive capillary gels, and composites for 3D printing. We further discuss how magnetic forces can be used as an auxiliary parameter along with the capillary forces to assemble particles at fluid interfaces or in the bulk. Finally, we present examples how these interactions can be used jointly in magnetically responsive foams, gels, and pastes for 3D printing. The multiphasic particle gels for 3D printing open new opportunities for making of magnetically reconfigurable and “active” structures.more » « less
-
Theoretical and numerical models of active Janus particles commonly assume that the metallo-dielectric interface is parallel to the driving applied electric field. However, our experimental observations indicate that the equilibrium angle of orientation of electrokinetically driven Janus particles varies as a function of the frequency and voltage of the applied electric field. Here, we quantify the variation of the orientation with respect to the electric field and demonstrate that the equilibrium position represents the interplay between gravitational, electrostatic and electrohydrodynamic torques. The latter two categories are functions of the applied field (frequency, voltage) as well as the height of the particle above the substrate. Maximum departure from the alignment with the electric field occurs at low frequencies characteristic of induced-charge electrophoresis and at low voltages where gravity dominates the electrostatic and electrohydrodynamic torques. The departure of the interface from alignment with the electric field is shown to decrease particle mobility through comparison of freely suspended Janus particles subject only to electrical forcing and magnetized Janus particles in which magnetic torque is used to align the interface with the electric field. Consideration of the role of gravitational torque and particle–wall interactions could account for some discrepancies between theory, numerics and experiment in active matter systems.more » « less
-
We present an experimental study combining particle tracking, active microrheology, and differential dynamic microscopy (DDM) to investigate the dynamics and rheology of an oil–water interface during biofilm formation by the bacteria Pseudomonas Aeruginosa PA14. The interface transitions from an active fluid dominated by the swimming motion of adsorbed bacteria at early age to an active viscoelastic system at late ages when the biofilm is established. The microrheology measurements using microscale magnetic rods indicate that the biofilm behaves as a viscoelastic solid at late age. The bacteria motility at the interface during the biofilm formation, which is characterized in the DDM measurements, evolves from diffusive motion at early age to constrained, quasi-localized motion at later age. Similarly, the mobility of passively moving colloidal spheres at the interface decreases significantly with increasing interface age and shows a dependence on sphere size after biofilm formation that is orders-of-magnitude larger than that expected in a homogeneous system in equilibrium. We attribute this anomalous size dependence to either length-scale-dependent rheology of the biofilm or widely differing effects of the bacteria activity on the motion of spheres of different sizes.more » « less
-
At the appropriate length scales, capillary forces exerted by a liquid in contact with a compliant solid can cause the solid's deformation. Capillary forces are also able to align particles with discrete wettabilities – or Janus particles – at liquid interfaces. Their amphiphilic properties enable Janus particles to orient themselves at liquid interfaces such that both of their surfaces are facing their preferred fluid. However, it is unclear how to spontaneously obtain varying degrees of rotational alignment. Here we extend ideas of elasto-capillarity to modulate rotational alignment by connecting amphiphilic Janus cylinders in an antisymmetric configuration. As the Janus cylinders rotate they cause a twisting deformation of rod. We develop both a mathematical model and a physical macroscale setup to relate the angle of twist to the elastic and interfacial properties, which can be used to tune the extent of alignment of Janus particles at air–water interfaces. We additionally extend our analysis to calculate the twist profile on a compliant element with a distributed capillary torque.more » « less