Liquid droplet impact is a subject that has been investigated in both engineering and non-engineering applications to understand and to control this phenomenon. Spray cooling, ink-jet printing, spray coating and painting, soil erosion prevention, pesticide application, and impact erosion are merely a few examples in which droplet impact is involved. Erosion caused by droplet impact on a solid surface is important in numerous elements of industrial equipment, such as pipelines, steam turbines, and wind turbine blades. Though experimental and modeling studies have been performed on this topic, most failed to perform quantitative investigation especially when it came to the erosion of wind turbine blades. Moreover, most approaches assume that the impacting droplets are completely spherical and unaffected by any local turbulence or vortex shedding. As the droplet erosion process could be affected by several parameters, such as the impact velocity, shape and size of the droplets, this study focuses on investigating droplet properties and movement in a controlled lab environment. High speed imaging and Particle Image Velocimetry (PIV) methods are used for this purpose. PIV is used to measure the velocity, circularity, and size of the falling droplets in both disturbed and un-disturbed flow conditions. High-speed camera imaging provides additional insight to the path of the droplets’ movement in the presence of any turbulence. Experiments are performed at a variety of flow rates utilizing a range of blunt needle gauge sizes to create different droplet sizes. It is observed that the blunt needles produce a train of droplets that are different in size following each leading droplet. This is a crucial observation as it will have a direct impact on the magnitude of erosion and should be considered in the future modeling efforts.
more »
« less
EXPERIMENTAL INVESTIGATION OF WATER DROPLET EROSION ON METALLIC AND NON-METALLIC MATERIALS
Water droplet erosion (WDE) is a complex phenomenon that has been investigated for nearly a century. This form of erosion affects a wide range of energy industries from steam turbines and natural gas pipelines to wind turbine blades. The moving droplets impacting at a high relative speed create a high surge in surface pressure on the impacted material and damage the surface. The damage removes materials and can compromise strength for steam turbines and pipelines or affect the lift and drag forces on wind turbine blades. Research on WDE has been ongoing for decades with a majority of the reported results focused on metallic material testing and qualitative analysis comparing methodologies or surface conditions. The ongoing research at The University of Tulsa is conducting experiments with a variety of materials while exposed to an environment where water droplet erosion occurs. Impact velocity and droplet sizes are controlled within the facility and ongoing research with particle image velocimetry (PIV) is in use to characterize the falling droplets. Stainless steel 316, Aluminum 6061, and a variety of non-metallic materials are tested for a variety of conditions. The mass of each specimen is tracked and recorded at set intervals to determine the erosion ratio and erosion rate. Various other factors such as flowrate and rotational velocity are determined before testing as well as the percentage of droplets which impact the surface is determined with the use of a high-speed camera. Scanning electron microscopy (SEM) is also utilized to examine the material’s surfaces before and after testing to investigate the severity of erosion by water droplets. One impact velocity and one impact angle are set for all tested materials. These data points will be the starting point for future tests and modeling work to predict water droplet erosion based on simple factors.
more »
« less
- Award ID(s):
- 1852477
- PAR ID:
- 10502258
- Publisher / Repository:
- ASME
- Date Published:
- Journal Name:
- Proceedings of the ASME 2024 Fluids Engineering Division Summer Meeting
- Subject(s) / Keyword(s):
- erosion leading-edge erosion wind turbine droplet erosion
- Format(s):
- Medium: X
- Location:
- Anaheim, CA
- Sponsoring Org:
- National Science Foundation
More Like this
-
-
Abstract Quantification of the performance degradation on the annual energy production (AEP) of a wind farm due to leading‐edge (LE) erosion of wind turbine blades is important to design cost‐effective maintenance plans and timely blade retrofit. In this work, the effects of LE erosion on horizontal axis wind turbines are quantified using infrared (IR) thermographic imaging of turbine blades, as well as meteorological and SCADA data. The average AEP loss of turbines with LE erosion is estimated from SCADA and meteorological data to be between 3% and 8% of the expected power capture. The impact of LE erosion on the average power capture of the turbines is found to be higher at lower hub‐height wind speeds (peak around 50% of the turbine rated wind speed) and at lower turbulence intensity of the incoming wind associated with stable atmospheric conditions. The effect of LE erosion is investigated with IR thermography to identify the laminar to turbulent transition (LTT) position over the airfoils of the turbine blades. Reduction in the laminar flow region of about 85% and 87% on average in the suction and pressure sides, respectively, is observed for the airfoils of the investigated turbines with LE erosion. Using the observed LTT locations over the airfoils and the geometry of the blade, an average AEP loss of about 3.7% is calculated with blade element momentum simulations, which is found to be comparable with the magnitude of AEP loss estimated through the SCADA data.more » « less
-
null (Ed.)To design and optimize arrays of vertical-axis wind turbines (VAWTs) for maximal power density and minimal wake losses, a careful consideration of the inherently three-dimensional structure of the wakes of these turbines in real operating conditions is needed. Accordingly, a new volumetric particle-tracking velocimetry method was developed to measure three-dimensional flow fields around full-scale VAWTs in field conditions. Experiments were conducted at the Field Laboratory for Optimized Wind Energy (FLOWE) in Lancaster, CA, using six cameras and artificial snow as tracer particles. Velocity and vorticity measurements were obtained for a 2 kW turbine with five straight blades and a 1 kW turbine with three helical blades, each at two distinct tip-speed ratios and at Reynolds numbers based on the rotor diameter $$D$$ between $$1.26 \times 10^{6}$$ and $$1.81 \times 10^{6}$$ . A tilted wake was observed to be induced by the helical-bladed turbine. By considering the dynamics of vortex lines shed from the rotating blades, the tilted wake was connected to the geometry of the helical blades. Furthermore, the effects of the tilted wake on a streamwise horseshoe vortex induced by the rotation of the turbine were quantified. Lastly, the implications of this dynamics for the recovery of the wake were examined. This study thus establishes a fluid-mechanical connection between the geometric features of a VAWT and the salient three-dimensional flow characteristics of its near-wake region, which can potentially inform both the design of turbines and the arrangement of turbines into highly efficient arrays.more » « less
-
The purpose of this study was to develop a replicable methodology for testing the capabilities and characteristics of a wind turbine blade in a structural re-use application with the specific goal of creating and demonstrating an efficient and commercially viable wind blade pedestrian bridge design. Wind energy experienced a dramatic increase in popularity following the turn of the century and it is now a common source of renewable energy around the world. However, while wind turbines are able to produce clean energy while in service, turbine blades are designed for a fatigue life of only about 20 years. With the difficulty and costs associated with recycling the composite material blades used on the turbines, wind power companies choose to dispose of decommissioned blades in landfills instead. The Re-Wind BladeBridge project aims to promote a more sustainable life cycle for wind power by demonstrating that decommissioned wind turbine blades have the capability to be repurposed as structural elements in bridges. This paper presents an analysis and characterization of a LM 13.4 wind blade from a Nordex N29 turbine, along with a design for a pedestrian bridge using two LM 13.4 wind blades to create a 5-meter span bridge. Software developed by the Re-Wind team called “BladeMachine” was used to generate the engineering properties of the blade at multiple sections along the blade length. Resin burnout tests and mechanical testing in tension and compression were performed to determine the material and mechanical properties of the composite materials in the blade. Additionally, a four-point edgewise bending test was performed on a 4-meter section of the wind blade to evaluate its load carrying behavior. The results of these tests revealed that the LM 13.4 blades are suitable to be re-utilized as girders for a short-span pedestrian bridge. An overview of the design of the BladeBridge currently under construction in County Cork, Ireland is presented, including details on the architectural and structural design processes.more » « less
-
A field campaign was carried out to investigate ice accretion features on large turbine blades (50 m in length) and to assess power output losses of utility-scale wind turbines induced by ice accretion. After a 30-h icing incident, a high-resolution digital camera carried by an unmanned aircraft system was used to capture photographs of iced turbine blades. Based on the obtained pictures of the frozen blades, the ice layer thickness accreted along the blades’ leading edges was determined quantitatively. While ice was found to accumulate over whole blade spans, outboard blades had more ice structures, with ice layers reaching up to 0.3 m thick toward the blade tips. With the turbine operating data provided by the turbines’ supervisory control and data acquisition systems, icing-induced power output losses were investigated systematically. Despite the high wind, frozen turbines were discovered to rotate substantially slower and even shut down from time to time, resulting in up to 80% of icing-induced turbine power losses during the icing event. The research presented here is a comprehensive field campaign to characterize ice accretion features on full-scaled turbine blades and systematically analyze detrimental impacts of ice accumulation on the power generation of utility-scale wind turbines. The research findings are very useful in bridging the gaps between fundamental icing physics research carried out in highly idealized laboratory settings and the realistic icing phenomena observed on utility-scale wind turbines operating in harsh natural icing conditions.more » « less
An official website of the United States government

