skip to main content
US FlagAn official website of the United States government
dot gov icon
Official websites use .gov
A .gov website belongs to an official government organization in the United States.
https lock icon
Secure .gov websites use HTTPS
A lock ( lock ) or https:// means you've safely connected to the .gov website. Share sensitive information only on official, secure websites.


Title: Frequency-Selective Anharmonic Mode Analysis of Thermally Excited Vibrations in Proteins
Low-frequency molecular vibrations at far-infrared frequencies are thermally excited at room temperature. As a consequence, thermal fluctuations are not limited to the immediate vicinity of local minima of the potential energy surface and anharmonic properties cannot be ignored. The latter is particularly relevant in molecules with multiple conformations such as proteins and other biomolecules. However, existing theoretical and computational frameworks for the analysis of molecular vibrations have so far been limited by harmonic or quasi-harmonic approximations, which are ill-suited for the description of anharmonic low-frequency vibrations. Here, we developed a fully anharmonic analysis of molecular vibrations based on a time correlation formalism that eliminates the need for harmonic or quasi-harmonic approximations. We use molecular dynamics simulations of a small protein to demonstrate that this new approach, in contrast to harmonic and quasi-harmonic normal modes, correctly identifies the collective degrees of freedom associated with molecular vibrations at any given frequency. This allows us to unambiguously characterize the anharmonic character of low-frequency vibrations in the far-infrared spectrum.  more » « less
Award ID(s):
2154834
PAR ID:
10502722
Author(s) / Creator(s):
;
Publisher / Repository:
American Chemical Society
Date Published:
Journal Name:
Journal of Chemical Theory and Computation
Volume:
19
Issue:
16
ISSN:
1549-9618
Page Range / eLocation ID:
5481 to 5490
Format(s):
Medium: X
Sponsoring Org:
National Science Foundation
More Like this
  1. Shea, Joan-Emma (Ed.)
    We aim to automatize the identification of collective variables to simplify and speed up enhanced sampling simulations of conformational dynamics in biomolecules. We focus on anharmonic low-frequency vibrations that exhibit fluctuations on timescales faster than conformational transitions but describe a path of least resistance towards structural change. A key challenge is that harmonic approximations are ill-suited to characterize these vibrations, which are observed at far-infrared frequencies and are easily excited by thermal collisions at room temperature. Here, we approached this problem with a frequency-selective anharmonic (FRESEAN) mode analysis that does not rely on harmonic approximations and successfully isolates anharmonic low-frequency vibrations from short molecular dynamics simulation trajectories. We applied FRESEAN mode analysis to simulations of alanine dipeptide, a common test system for enhanced sampling simulation protocols, and compare the performance of isolated low-frequency vibrations to conventional user-defined collective variables (here backbone dihedral angles) in enhanced sampling simulations. The comparison shows that enhanced sampling along anharmonic low-frequency vibrations not only reproduces known conformational dynamics but can even further improve sampling of slow transitions compared to user-defined collective variables. Notably, free energy surfaces spanned by low-frequency anharmonic vibrational modes exhibit lower barriers associated with conformational transitions relative to representations in backbone dihedral space. We thus conclude that anharmonic low-frequency vibrations provide a promising path for highly effective and fully automated enhanced sampling simulations of conformational dynamics in biomolecules. 
    more » « less
  2. Ion receptors are molecular hosts that bind ionic guests, often with great selectivity. The interplay of solvation and ion binding in anion host-guest complexes in solution governs the binding efficiency and selectivity of such ion receptors. To gain molecular-level insight into the intrinsic binding properties of octamethyl calix[4]pyrrole (omC4P) host molecules with halide guest ions, we performed cryogenic ion vibrational spectroscopy (CIVS) of omC4P in complexes with fluoride, chloride, and bromide ions. We interpret the spectra using density functional theory, describing the infrared spectra of these complexes with both harmonic and anharmonic second-order vibrational perturbation theory (VPT2) calculations. The NH stretching modes of the pyrrole moieties serve as sensitive probes of the ion binding properties, as their frequencies encode the ion-receptor interactions. While scaled harmonic spectra reproduce the experimental NH stretching modes of the chloride and bromide complexes in broad strokes, the high proton affinity of fluoride introduces strong anharmonic effects. As a result, the spectrum of F−·omC4P is not even qualitatively captured by harmonic calculations, but it is recovered very well by VPT2 calculations. In addition, the VPT2 calculations recover the intricate coupling of the NH stretching modes with overtones and combination bands of CH stretching and NH bending modes and with low-frequency vibrations of the omC4P macrocycle, which are apparent for all halide ion complexes investigated here. A comparison of the CIVS spectra with infrared spectra of solutions of the same ion-receptor complexes in d3-acetonitrile and d6-acetone shows how ion solvation changes the ion-receptor interactions for the different halide ions. 
    more » « less
  3. Abstract Employing a quartz crystal microbalance (QCM) as a MHz‐viscoelastic sensor requires extracting information from higher harmonics beyond the Sauerbrey limit, which can be problematic for rubbery polymer films that are highly dissipative because of the onset of anharmonic side bands and film resonance. Data analysis for QCM can frequently obscure the underlying physics or involve approximations that tend to break down at higher harmonics. In this study, modern computational tools are leveraged to solve a continuum physics model for the QCM's acoustic shear wave propagation through a polymer film with zero approximations, retaining the physical intuition of how the experimental signal connects to the shear modulus of the material. The resulting set of three coupled equations are solved numerically to fit experimental data for the resonance frequency Δfnand dissipation ΔΓnshifts as a function of harmonic numbern, over an extended harmonic range approaching film resonance. This allows the frequency‐dependent modulus of polymer films at MHz frequencies, modeled as linear on a log–log scale, to be determined for rubbery polybutadiene (PB) and polydimethylsiloxane (PDMS) films, showing excellent agreement with time–temperature shifted rheometry data from the literature. 
    more » « less
  4. We introduce a lattice dynamics package which calculates elastic, thermodynamic and thermal transport properties of crystalline materials from data on their force and potential energy as a function of atomic positions. The data can come from density functional theory (DFT) calculations or classical molecular dynamics runs performed in a supercell. First, the model potential parameters, which are anharmonic force constants are extracted from the latter runs. Then, once the anharmonic model is defined, thermal conductivity and equilibrium properties at finite temperatures can be computed using lattice dynamics, Boltzmann transport theories, and a variational principle respectively. In addition, the software calculates the mechanical properties such as elastic tensor, Gruneisen parameters and the thermal expansion coefficient within the quasi-harmonic approximation (QHA). Phonons, elastic constants and thermodynamic properties results applied to the germanium crystal will be illustrated. Using the force constants as a force field, one may also perform molecular dynamics (MD) simulations in order to investigate the combined effects of anharmonicity and defect scattering beyond perturbation theory. 
    more » « less
  5. Abstract Ultrafast adiabatic frequency conversion is a powerful method, capable of efficiently and coherently transfering ultrashort pulses between different spectral ranges, e.g. from near-infrared to mid-infrared, visible or ultra-violet. This is highly desirable in research fields that are currently limited by available ultrafast laser sources, e.g. attosecond science, strong-field physics, high-harmonic generation spectroscopy and multidimensional mid-infrared spectroscopy. Over the past decade, adiabatic frequency conversion has substantially evolved. Initially applied to quasi-monochromatic, undepleted pump interactions, it has been generalized to include ultrashort, broadband, fully-nonlinear dynamics. Through significant theoretical development and experimental demonstrations, it has delivered new capabilities and superior performance in terms of bandwidth, efficiency and robustness, as compared to other frequency conversion techniques. This article introduces the concept of adiabatic nonlinear frequency conversion, reviews its theoretical foundations, presents significant milestones and highlights contemporary ultrafast applications that may, or already do, benefit from utilizing this method. 
    more » « less