skip to main content
US FlagAn official website of the United States government
dot gov icon
Official websites use .gov
A .gov website belongs to an official government organization in the United States.
https lock icon
Secure .gov websites use HTTPS
A lock ( lock ) or https:// means you've safely connected to the .gov website. Share sensitive information only on official, secure websites.


Title: Writing experiences of neurodiverse students in graduate STEM programs
BackgroundDespite efforts to increase the participation of marginalized students, neurodivergent students remain underrepresented in graduate STEM programs. Prior research shows that these students often experience challenges related to key aspects of writing. The objective of this qualitative study is to deepen understanding of the writing experiences, strengths, and challenges of neurodivergent students pursuing graduate degrees in STEM fields. In this analysis, we consider the factors that influence the writing-specific challenges faced by neurodivergent students in graduate STEM programs. This work also explores how neurodivergent students leverage strengths and strategies for success in graduate-level writing tasks. ResultsThis qualitative study draws on Social Cognitive Theory (SCT) to consider the ways cognitive, behavioral, and environmental factors impact writing experiences. We used thematic analysis of the transcripts from 13 focus groups and 1 interview to examine the writing experiences of 31 students who identify as neurodivergent in graduate STEM programs. The findings suggest that many writing challenges faced by neurodivergent graduate students are behaviors and beliefs that emerge in response to environmental factors such as the culture of STEM fields, prior experiences with writing assignments, anxiety driven by intensive feedback cycles, and perceived and experienced stigma. Study participants employed a range of collaborative and situational strategies to support and enhance their writing productivity. ConclusionThese findings may provide insight for current and future neurodivergent graduate students as they adjust to the intense writing demands of graduate degree programs and for graduate program administrators and faculty advisors as they consider new ways to support the academic success of neurodivergent graduate students.  more » « less
Award ID(s):
2105721
PAR ID:
10502905
Author(s) / Creator(s):
; ; ;
Publisher / Repository:
Frontiers
Date Published:
Journal Name:
Frontiers in Education
Volume:
8
ISSN:
2504-284X
Format(s):
Medium: X
Sponsoring Org:
National Science Foundation
More Like this
  1. IntroductionDespite efforts to increase the participation of marginalized students in Science, Technology, Engineering, and Mathematics (STEM), neurodivergent students have remained underrepresented and underserved in STEM graduate programs. This qualitative study aims to increase understanding of the experiences of neurodivergent graduate students pursuing advanced degrees in STEM. In this analysis, we consider how common graduate school experiences interface with the invisibility of neurological diversity, thus contributing to a set of unique challenges experienced by neurodivergent students. Materials and methodsIn this qualitative study, 10 focus group sessions were conducted to examine the experiences of 18 students who identify as neurodivergent in graduate STEM programs at a large, research-intensive (R1) university. We used thematic analysis of the transcripts from these focus groups to identify three overarching themes within the data. ResultsThe findings are presented through a novel model for understanding neurodivergent graduate STEM student experiences. The findings suggest that students who identify as neurodivergent feel pressure to conform to perceived neurotypical norms to avoid negative perceptions. They also may self-silence to maintain stability within the advisor-advisee relationship. The stigma associated with disability labels contributes a heavy cognitive and emotional load as students work to mask neurodiversity-related traits, navigate decisions about disclosure of their neurodivergence, and ultimately, experience significant mental health challenges and burnout. Despite these many challenges, the neurodivergent graduate students in this study perceived aspects of their neurodivergence as a strength. DiscussionThe findings may have implications for current and future graduate students, for graduate advisors who may or may not be aware of their students’ neurodivergence, and for program administrators who influence policies that impact the wellbeing and productivity of neurodivergent students. 
    more » « less
  2. IntroductionSTEM graduates are important to U.S. research development and innovation, adding diverse perspectives and talents to communities and the academy, and enhancing the financial stability of universities. Graduate STEM students’ work on funded research occasionally engages them in outreach opportunities with K-12 schools and students. Yet, few graduate students participate in professional development that prepares them for these roles. MethodsThis exploratory, descriptive case study chronicles the experiences of eight graduate STEM students (six international and two domestic) who visited high school classrooms, via Zoom, as part of a federally funded sustainability project. This study investigated the factors graduate STEM students considered most important when planning and implementing their Zoom outreach visits, what they perceived as the supports, benefits, and challenges, and in what ways their Zoom visits and reflections correspond to the Motivational Theory of Role Modeling. ResultsThe findings demonstrate graduate students’ focus on engaging students, the relevance of science to society, and job opportunities in STEM fields. Graduate students perceived challenges associated with making the complex academic language and research understandable to high school students and felt supported by university team members and high school teachers. DiscussionImplications for role models and professional development for graduate STEM students are discussed, along with novel contributions to the theoretical framework. 
    more » « less
  3. Abstract BackgroundGiven high attrition rates and lack of interest in faculty careers, it is crucial to understand how doctoral engineering students conceptualize academia and academic careers. Purpose/HypothesisThis study aims to characterize the development of academic disenchantment among engineering students who have considered departure from their doctoral programs. Schema theory was used to explore how students develop and evolve in their conceptualizations of academia through their lived experiences. Design/MethodData were collected from 42 graduate students from research‐intensive universities across the United States who participated in qualitative, semi‐structured interviews investigating expectations for graduate school, experiences, attrition and persistence considerations, and career trajectories. The transcripts were thematically analyzed through open and axial coding to understand how students constructed their schemas of the academy. FindingsExperiences and quotations of four participants are presented to describe the results of the transcripts. Participants' misaligned expectations of their graduate program's values and practices, coupled with a lack of agency and support, led them to see their graduate programs as antagonistic to their short‐ and long‐term career success. Even for students who may likely persist through to PhD degree completion, the development of disenchantment dissuades students—even those who once desired a faculty career—from interest in the academy. ConclusionsBy understanding how disenchantment arose in our participants' experiences, we better understand how to equip students with resources that will help them navigate graduate programs. This research advances the literature by identifying underutilized opportunities to prepare students to cope with the challenges of engineering doctoral education. 
    more » « less
  4. The increasing recognition of neurodiversity (ND) within science, technology, engineeringand mathematics (STEM) fields has led to a growing demand for inclusive educationalpractices that support neurodivergent scholars. This paper explores the impact ofmentorship, career counseling, and the use of strengths-based assessments, such as theBirkman® assessment, on the career readiness of neurodivergent students at LandmarkCollege’s S-STEM program. Using social cognitive career theory (SCCT) as a framework,we analyze longitudinal data from program participants, highlighting an increase ininternship participation and career confidence. Interviews with recent graduates reveal keychallenges in the post-graduation transition period, the role of professional networks, andthe importance of near-peer mentoring in career persistence. The study underscores thecritical need for structured post-graduate support and proposes a near-peer mentorshipmodel to facilitate career integration for neurodivergent STEM graduates. Findingscontribute to the growing literature on ND inclusion in STEM and offer actionable insightsfor higher education institutions. 
    more » « less
  5. Abstract BackgroundAlthough most engineering graduate students are funded and usually complete their degrees faster than other disciplines, attrition remains a problem in engineering. Existing research has explored the psychological and sociological factors contributing to attrition but not the structural factors impacting attrition. Purpose/HypothesisUsing systems theory, this study seeks to understand nuance in how underlying structural causes affect engineering graduate students' attrition experiences in ways that may differ from their official reasons for departure. Design/MethodsData were collected through semi‐structured interviews with seven departing or already departed engineering doctoral students from R1 graduate programs across the United States. Using thematic analysis, root cause analyses were conducted to understand participants' attrition experiences to explore how structures influence causes of departure. ResultsThe ways participants discuss root causes of their departure indicate differences in formal reasons for departure and underlying causes of departure. We highlight the role of informal and formal policy as root causes of a different attrition rationale often passed off as interpersonal issues. When interpreted as evidence of structural issues, the causes of departure show ways in which action–inaction, policy–“null” policy serve as structural features governing student attrition decision processes. We also highlight a form of benign neglect toward struggling graduate students. ConclusionThis study reveals important nuances underlying face‐value reasons of attrition indicating foundational structural issues contributing to engineering graduate student attrition. Coaching faculty in team management and encouraging close revision of departmental policies could help mitigate students' negative graduate experiences and decrease unnecessary attrition. 
    more » « less