Abstract Single-photon defect emitters (SPEs), especially those with magnetically and optically addressable spin states, in technologically mature wide bandgap semiconductors are attractive for realizing integrated platforms for quantum applications. Broadening of the zero phonon line (ZPL) caused by dephasing in solid state SPEs limits the indistinguishability of the emitted photons. Dephasing also limits the use of defect states in quantum information processing, sensing, and metrology. In most defect emitters, such as those in SiC and diamond, interaction with low-energy acoustic phonons determines the temperature dependence of the dephasing rate and the resulting broadening of the ZPL with the temperature obeys a power law. GaN hosts bright and stable single-photon emitters in the 600–700 nm wavelength range with strong ZPLs even at room temperature. In this work, we study the temperature dependence of the ZPL spectra of GaN SPEs integrated with solid immersion lenses with the goal of understanding the relevant dephasing mechanisms. At temperatures below ~ 50 K, the ZPL lineshape is found to be Gaussian and the ZPL linewidth is temperature independent and dominated by spectral diffusion. Above ~ 50 K, the linewidth increases monotonically with the temperature and the lineshape evolves into a Lorentzian. Quite remarkably, the temperature dependence of the linewidth does not follow a power law. We propose a model in which dephasing caused by absorption/emission of optical phonons in an elastic Raman process determines the temperature dependence of the lineshape and the linewidth. Our model explains the temperature dependence of the ZPL linewidth and lineshape in the entire 10–270 K temperature range explored in this work. The ~ 19 meV optical phonon energy extracted by fitting the model to the data matches remarkably well the ~ 18 meV zone center energy of the lowest optical phonon band ($$E_{2}(low)$$ ) in GaN. Our work sheds light on the mechanisms responsible for linewidth broadening in GaN SPEs. Since a low energy optical phonon band ($$E_{2}(low)$$ ) is a feature of most group III–V nitrides with a wurtzite crystal structure, including hBN and AlN, we expect our proposed mechanism to play an important role in defect emitters in these materials as well. 
                        more » 
                        « less   
                    
                            
                            Ultrafast spectral diffusion of GaN defect single photon emitters
                        
                    
    
            Defect-based single photon emitters play an important role in quantum information technologies. Quantum emitters in technologically mature direct wide bandgap semiconductors, such as nitrides, are attractive for on-chip photonic integration. GaN has recently been reported to host bright and photostable defect single photon emitters in the 600–700 nm wavelength range. Spectral diffusion caused by local electric field fluctuation around the emitter limits the photon indistinguishability, which is a key requirement for quantum applications. In this work, we investigate the spectral diffusion properties of GaN defect emitters integrated with a solid immersion lens, employing both spectral domain and time domain techniques through spectroscopy and photon autocorrelation measurements at cryogenic temperature. Our results show that the GaN defect emitter at 10 K exhibits a Gaussian line shape with a linewidth of ∼1 meV while the spectral diffusion characteristic time falls within the range of a few hundred nanoseconds to a few microseconds. We study the dependency of the spectral diffusion rate and Gaussian linewidth on the excitation laser power. Our work provides insight into the ultrafast spectral diffusion in GaN defect-based single photon emitter systems and contributes toward harnessing the potential of these emitters for applications, especially for indistinguishable single photon generation. 
        more » 
        « less   
        
    
    
                            - PAR ID:
- 10502907
- Publisher / Repository:
- AIP
- Date Published:
- Journal Name:
- Applied Physics Letters
- Volume:
- 123
- Issue:
- 17
- ISSN:
- 0003-6951
- Format(s):
- Medium: X
- Sponsoring Org:
- National Science Foundation
More Like this
- 
            
- 
            GaN has recently been shown to host bright, photostable, defect single-photon emitters in the 600–700 nm wavelength range that are promising for quantum applications. The nature and origin of these defect emitters remain elusive. In this work, we study the optical dipole structures and orientations of these defect emitters using the defocused imaging technique. In this technique, the far-field radiation pattern of an emitter in the Fourier plane is imaged to obtain information about the structure of the optical dipole moment and its orientation in 3D. Our experimental results, backed by numerical simulations, show that these defect emitters in GaN exhibit a single dipole moment that is oriented almost perpendicular to the wurtzite crystal c-axis. Data collected from many different emitters show that the angular orientation of the dipole moment in the plane perpendicular to the c-axis exhibits a distribution that shows peaks centered at the angles corresponding to the nearest Ga–N bonds and also at the angles corresponding to the nearest Ga–Ga (or N–N) directions. Moreover, the in-plane angular distribution shows little difference among defect emitters with different emission wavelengths in the 600–700 nm range. Our work sheds light on the nature and origin of these GaN defect emitters.more » « less
- 
            Morkoç, Hadis; Fujioka, Hiroshi; Schwarz, Ulrich T (Ed.)GaN has recently been shown to host bright, photostable, defect single-photon emitters in the 600–700 nm wavelength range that are promising for quantum applications. Our studies have revealed the optical dipole structure, mechanisms associated with optical dipole dephasing, and the spin structure of these emitters. We have also discovered optically detected magnetic resonance (ODMR) in two distinct species of defects. In one group, we found negative optically detected magnetic resonance of a few percent associated with a metastable electronic state, whereas in the other, we found positive optically detected magnetic resonance of up to 30% associated with the ground and optically excited electronic states. We also established coherent control over a single defect’s ground-state spin. In this talk, we will present our results on the basic physics of these defects and also discuss the spin physics associated with the observed ODMR.more » « less
- 
            Optically active defects in 2D materials, such as hexagonal boron nitride (hBN) and transition metal dichalcogenides (TMDs), are an attractive class of single-photon emitters with high brightness, room-temperature operation, site-specific engineering of emitter arrays, and tunability with external strain and electric fields. In this work, we demonstrate a novel approach to precisely align and embed hBN and TMDs within background-free silicon nitride microring resonators. Through the Purcell effect, high-purity hBN emitters exhibit a cavity-enhanced spectral coupling efficiency up to 46% at room temperature, which exceeds the theoretical limit for cavity-free waveguide-emitter coupling and previous demonstrations by nearly an order-of-magnitude. The devices are fabricated with a CMOS-compatible process and exhibit no degradation of the 2D material optical properties, robustness to thermal annealing, and 100 nm positioning accuracy of quantum emitters within single-mode waveguides, opening a path for scalable quantum photonic chips with on-demand single-photon sources.more » « less
- 
            The integration of solid-state single-photon sources with foundry-compatible photonic platforms is crucial for practical and scalable quantum photonic applications. This study explores aluminum nitride (AlN) as a material with properties highly suitable for integrated on-chip photonics and the ability to host defect-center related single-photon emitters. We have conducted a comprehensive analysis of the creation of single-photon emitters in AlN, utilizing heavy ion irradiation and thermal annealing techniques. Subsequently, we have performed a detailed analysis of their photophysical properties. Guided by theoretical predictions, we assessed the potential of Zirconium (Zr) ions to create optically addressable spin defects and employed Krypton (Kr) ions as an alternative to target lattice defects without inducing chemical doping effects. With a 532 nm excitation wavelength, we found that single-photon emitters induced by ion irradiation were primarily associated with vacancy-type defects in the AlN lattice for both Zr and Kr ions. The density of these emitters increased with ion fluence, and there was an optimal value that resulted in a high density of emitters with low AlN background fluorescence. Under a shorter excitation wavelength of 405 nm, Zr-irradiated AlN exhibited isolated point-like emitters with fluorescence in the spectral range theoretically predicted for spin-defects. However, similar defects emitting in the same spectral range were also observed in AlN irradiated with Kr ions as well as in as-grown AlN with intrinsic defects. This result is supportive of the earlier theoretical predictions, but at the same time highlights the difficulties in identifying the sought-after quantum emitters with interesting properties related to the incorporation of Zr ions into the AlN lattice by fluorescence alone. The results of this study largely contribute to the field of creating quantum emitters in AlN by ion irradiation and direct future studies emphasizing the need for spatially localized Zr implantation and testing for specific spin properties.more » « less
 An official website of the United States government
An official website of the United States government 
				
			 
					 
					
 
                                    