Abstract A rich body of knowledge links biodiversity to ecosystem functioning (BEF), but it is primarily focused on small scales. We review the current theory and identify six expectations for scale dependence in the BEF relationship: (1) a nonlinear change in the slope of the BEF relationship with spatial scale; (2) a scale‐dependent relationship between ecosystem stability and spatial extent; (3) coexistence within and among sites will result in a positive BEF relationship at larger scales; (4) temporal autocorrelation in environmental variability affects species turnover and thus the change in BEF slope with scale; (5) connectivity in metacommunities generates nonlinear BEF and stability relationships by affecting population synchrony at local and regional scales; (6) spatial scaling in food web structure and diversity will generate scale dependence in ecosystem functioning. We suggest directions for synthesis that combine approaches in metaecosystem and metacommunity ecology and integrate cross‐scale feedbacks. Tests of this theory may combine remote sensing with a generation of networked experiments that assess effects at multiple scales. We also show how anthropogenic land cover change may alter the scaling of the BEF relationship. New research on the role of scale in BEF will guide policy linking the goals of managing biodiversity and ecosystems.
more »
« less
Bottom-Up Perspectives on the Re-Greening of the Sahel: An Evaluation of the Spatial Relationship between Soil and Water Conservation (SWC) and Tree-Cover in Burkina Faso
The Re-Greening of the West African Sahel has attracted great interdisciplinary interest since it was originally detected in the mid-2000s. Studies have investigated vegetation patterns at regional scales using a time series of coarse resolution remote sensing analyses. Fewer have attempted to explain the processes behind these patterns at local scales. This research investigates bottom-up processes driving Sahelian greening in the northern Central Plateau of Burkina Faso—a region recognized as a greening hot spot. The objective was to understand the relationship between soil and water conservation (SWC) measures and the presence of trees through a comparative case study of three village terroirs, which have been the site of long-term human ecology fieldwork. Research specifically tests the hypothesis that there is a positive relationship between SWC and tree cover. Methods include remote sensing of high-resolution satellite imagery and aerial photos; GIS procedures; and chi-square statistical tests. Results indicate that, across all sites, there is a significant association between SWC and trees (chi-square = 20.144, p ≤ 0.01). Decomposing this by site, however, points out that this is not uniform. Tree cover is strongly associated with SWC investments in only one village—the one with the most tree cover (chi-square = 39.098, p ≤ 0.01). This pilot study concludes that SWC promotes tree cover but this is heavily modified by local contexts.
more »
« less
- Award ID(s):
- 1759064
- PAR ID:
- 10503398
- Publisher / Repository:
- MDPI
- Date Published:
- Journal Name:
- Land
- Volume:
- 9
- Issue:
- 6
- ISSN:
- 2073-445X
- Page Range / eLocation ID:
- 208
- Format(s):
- Medium: X
- Sponsoring Org:
- National Science Foundation
More Like this
-
-
Abstract Global forests are increasingly lost to climate change, disturbance, and human management. Evaluating forests' capacities to regenerate and colonize new habitats has to start with the seed production of individual trees and how it depends on nutrient access. Studies on the linkage between reproduction and foliar nutrients are limited to a few locations and few species, due to the large investment needed for field measurements on both variables. We synthesized tree fecundity estimates from the Masting Inference and Forecasting (MASTIF) network with foliar nutrient concentrations from hyperspectral remote sensing at the National Ecological Observatory Network (NEON) across the contiguous United States. We evaluated the relationships between seed production and foliar nutrients for 56,544 tree‐years from 26 species at individual and community scales. We found a prevalent association between high foliar phosphorous (P) concentration and low individual seed production (ISP) across the continent. Within‐species coefficients to nitrogen (N), potassium (K), calcium (Ca), and magnesium (Mg) are related to species differences in nutrient demand, with distinct biogeographic patterns. Community seed production (CSP) decreased four orders of magnitude from the lowest to the highest foliar P. This first continental‐scale study sheds light on the relationship between seed production and foliar nutrients, highlighting the potential of using combined Light Detection And Ranging (LiDAR) and hyperspectral remote sensing to evaluate forest regeneration. The fact that both ISP and CSP decline in the presence of high foliar P levels has immediate application in improving forest demographic and regeneration models by providing more realistic nutrient effects at multiple scales.more » « less
-
Roberts, Scott (Ed.)Abstract On-the-ground sample-based forest inventory methods have been the standard practice for more than a century, however, remote sensing technologies such as airborne laser scanning (ALS) are providing wall-to-wall inventories based on individual tree measurements. In this study, we assess the accuracy of individual tree height, diameter, and volume derived from field-cruising measurements and three ALS data-derived methods in a 1.1 ha stand using direct measurements acquired on felled trees and log-scale volume measurements. Results show that although height derived from indirect conventional field measurements and ALS were statistically equivalent to felled tree height measurements, ALS measured heights had lower root mean square error (RMSE) and bias. Individual tree diameters modeled using a height-to-diameter-at-breast-height model derived from local forest inventory data and the software ForestView had moderate RMSE (8.3–8.5 cm) and bias (-3.0 – -0.3 cm). The ALS-based methods underdetected trees but accounted for 78%–91% of the field reference harvested merchantable volume and 71%–99% of the merchantable volume scaled at the mill. The results also illustrate challenges of using mill-scaled volume estimates as validation data and highlight the need for more research in this area. Overall, the results provide key insights to forest managers on accuracies associated with conventional field-derived and ALS-derived individual tree inventories. Study Implications: Forest inventory data provide critical information for operational decisions and forest product supply chain planning. Traditionally, forest inventories have used field sampling of stand conditions, which is time-intensive and cost-prohibitive to conduct at large spatial scales. Remote sensing technologies such as airborne laser scanning (ALS) provide wall-to-wall inventories based on individual tree measurements. This study advances our understanding of the accuracy of conventional field-derived and ALS-derived individual tree inventories by evaluating these inventories with felled tree and log scaling data. The results provide key insights to forest managers on errors associated with conventional field and ALS-derived individual tree measurements.more » « less
-
Abstract Many studies have reported that the Arctic is greening; however, we lack an understanding of the detailed patterns and processes that are leading to this observed greening. The normalized difference vegetation index (NDVI) is used to quantify greening, which has had largely positive trends over the last few decades using low spatial resolution satellite imagery such as AVHRR or MODIS over the pan-Arctic region. However, substantial fine scale spatial heterogeneity in the Arctic makes this large-scale investigation hard to interpret in terms of vegetation and other environmental changes. Here we focus on one area of the northern Alaskan Arctic using high spatial resolution (4 m) multispectral satellite imagery from DigitalGlobe™to analyze the greening trend near Utqiaġvik (formerly known as Barrow) over 14 years from 2002 to 2016. We found that tundra vegetation has been greening (τ = 0.65,p = 0.01, NDVI increase of 0.01 yr−1) despite no overall change in vegetation community composition. The greening is most closely correlated to the number of thawing degree days (R2 = 0.77,F = 21.5,p < 0.001) which increased in a similar linear trend over the 14 year study period (1.79 ± 0.50 days per year,p < 0.01,τ = −0.56). This suggests that in this Arctic ecosystem, greening is occurring due to a lengthening growing season that appears to stimulate plant productivity without any significant change in vegetation communities. We found that vegetation communities in wetter locations greened about twice as fast as those found in drier conditions supporting the hypothesis that these communities respond more strongly to warming. We suggest that in Arctic environments, vegetation productivity may continue to rise, particularly in wet areas.more » « less
-
ABSTRACT Remote sensing holds promise for ecosystem‐level monitoring of plant drought stress but is limited by uncertain linkages between physiological stress and remotely sensed metrics of water content. Here, we investigate the stability of relationships between water potential (Ψ) and water content (measured in situ and via repeat airborne VSWIR imaging) over diel, seasonal, and spatial variation in two xeric oak tree species. We also compare these field‐based relationships with ones established in laboratory settings that might be used as calibration. Due to confounding physiological processes related to growth, both in situ and remotely sensed metrics lacked consistent relationships with stress when measured across space or through time. Relationships between water content and physiological drought stress measured over the growing season were stronger and more closely related to established laboratory‐based drydown methods than those measured across space (i.e., between wet trees and dry trees). These results provide insight into the utility of “space for time” approaches in remote sensing and demonstrate both important limitations and the potential power of high temporal resolution remote sensing for detecting drought stress.more » « less
An official website of the United States government

