skip to main content
US FlagAn official website of the United States government
dot gov icon
Official websites use .gov
A .gov website belongs to an official government organization in the United States.
https lock icon
Secure .gov websites use HTTPS
A lock ( lock ) or https:// means you've safely connected to the .gov website. Share sensitive information only on official, secure websites.


Title: Remotely sensed crown nutrient concentrations modulate forest reproduction across the contiguous United States
Abstract Global forests are increasingly lost to climate change, disturbance, and human management. Evaluating forests' capacities to regenerate and colonize new habitats has to start with the seed production of individual trees and how it depends on nutrient access. Studies on the linkage between reproduction and foliar nutrients are limited to a few locations and few species, due to the large investment needed for field measurements on both variables. We synthesized tree fecundity estimates from the Masting Inference and Forecasting (MASTIF) network with foliar nutrient concentrations from hyperspectral remote sensing at the National Ecological Observatory Network (NEON) across the contiguous United States. We evaluated the relationships between seed production and foliar nutrients for 56,544 tree‐years from 26 species at individual and community scales. We found a prevalent association between high foliar phosphorous (P) concentration and low individual seed production (ISP) across the continent. Within‐species coefficients to nitrogen (N), potassium (K), calcium (Ca), and magnesium (Mg) are related to species differences in nutrient demand, with distinct biogeographic patterns. Community seed production (CSP) decreased four orders of magnitude from the lowest to the highest foliar P. This first continental‐scale study sheds light on the relationship between seed production and foliar nutrients, highlighting the potential of using combined Light Detection And Ranging (LiDAR) and hyperspectral remote sensing to evaluate forest regeneration. The fact that both ISP and CSP decline in the presence of high foliar P levels has immediate application in improving forest demographic and regeneration models by providing more realistic nutrient effects at multiple scales.  more » « less
Award ID(s):
1638720 2021898 2211764
PAR ID:
10569258
Author(s) / Creator(s):
; ; ; ;
Publisher / Repository:
Wiley
Date Published:
Journal Name:
Ecology
Volume:
105
Issue:
8
ISSN:
0012-9658
Format(s):
Medium: X
Sponsoring Org:
National Science Foundation
More Like this
  1. Abstract The relationships that control seed production in trees are fundamental to understanding the evolution of forest species and their capacity to recover from increasing losses to drought, fire, and harvest. A synthesis of fecundity data from 714 species worldwide allowed us to examine hypotheses that are central to quantifying reproduction, a foundation for assessing fitness in forest trees. Four major findings emerged. First, seed production is not constrained by a strict trade-off between seed size and numbers. Instead, seed numbers vary over ten orders of magnitude, with species that invest in large seeds producing more seeds than expected from the 1:1 trade-off. Second, gymnosperms have lower seed production than angiosperms, potentially due to their extra investments in protective woody cones. Third, nutrient-demanding species, indicated by high foliar phosphorus concentrations, have low seed production. Finally, sensitivity of individual species to soil fertility varies widely, limiting the response of community seed production to fertility gradients. In combination, these findings can inform models of forest response that need to incorporate reproductive potential. 
    more » « less
  2. Forest diversity is the outcome of multiple species-specific processes and tolerances, from regeneration, growth, competition and mortality of trees. Predicting diversity thus requires a comprehensive understanding of those processes. Regeneration processes have traditionally been overlooked, due to high stochasticity and assumptions that recruitment is not limiting for forests. Thus, we investigated the importance of seed production and seedling survival on forest diversity in the Pacific Northwest (PNW) using a forest gap model (ForClim). Equations for regeneration processes were fit to empirical data and added into the model, followed by simulations where regeneration processes and parameter values varied. Adding regeneration processes into ForClim improved the simulation of species composition, compared to Forest Inventory Analysis data. We also found that seed production was not as important as seedling survival, and the time it took for seedlings to grow into saplings was a critical recruitment parameter for accurately capturing tree species diversity in PNW forest stands. However, our simulations considered historical climate only. Due to the sensitivity of seed production and seedling survival to weather, future climate change may alter seed production or seedling survival and future climate change simulations should include these regeneration processes to predict future forest dynamics in the PNW. This article is part of the theme issue ‘Ecological novelty and planetary stewardship: biodiversity dynamics in a transforming biosphere’. 
    more » « less
  3. Abstract Plants display a range of temporal patterns of inter‐annual reproduction, from relatively constant seed production to “mast seeding,” the synchronized and highly variable interannual seed production of plants within a population. Previous efforts have compiled global records of seed production in long‐lived plants to gain insight into seed production, forest and animal population dynamics, and the effects of global change on masting. Existing datasets focus on seed production dynamics at the population scale but are limited in their ability to examine community‐level mast seeding dynamics across different plant species at the continental scale. We harmonized decades of plant reproduction data for 141 woody plant species across nine Long‐Term Ecological Research (LTER) or long‐term ecological monitoring sites from a wide range of habitats across the United States. Plant reproduction data are reported annually between 1957 and 2021 and based on either seed traps or seed and/or cone counts on individual trees. A wide range of woody plant species including trees, shrubs, and lianas are represented within sites allowing for direct community‐level comparisons among species. We share code for filtering of data that enables the comparison of plot and individual tree data across sites. For each species, we compiled relevant life history attributes (e.g., seed mass, dispersal syndrome, seed longevity, sexual system) that may serve as important predictors of mast seeding in future analyses. To aid in phylogenetically informed analyses, we also share a phylogeny and phylogenetic distance matrix for all species in the dataset. These data can be used to investigate continent‐scale ecological properties of seed production, including individual and population variability, synchrony within and across species, and how these properties of seed production vary in relation to plant species traits and environmental conditions. In addition, these data can be used to assess how annual variability in seed production is associated with climate conditions and how that varies across populations, species, and regions. The dataset is released under a CC0 1.0 Universal public domain license. 
    more » « less
  4. Abstract The effects of vertebrate seed predation on the regeneration of restored forests are not well understood because most past studies have focused on seed predation within the first few years after restoration and have measured seed removal without quantifying subsequent seedling establishment of seeds that avoid predation. Quantifying the establishment of seeds that escape predation in restored forests at later stages of regrowth is crucial for anticipating longer‐term recovery trajectories. Here, we evaluated the potential role of vertebrate seed predators in limiting recruitment of later‐successional tree species in nine forests actively restored ≥15 years prior and in four paired remnant forest fragments embedded in an agricultural landscape in southern Costa Rica. We conducted seed addition experiments with four tree species inside and outside vertebrate exclosures and used camera trapping to detect seed predators. To determine the fate of seeds that avoided predation, we also measured seedling establishment after 1 year, given that other mortality factors may compensate in the absence of vertebrate seed predation. We detected two species of birds and five species of granivorous mammals removing seeds. Seed tagging indicated that most removal resulted in predation. For three of the four tree species tested, vertebrate seed predation reduced seedling establishment. The magnitude of this effect depended on species' susceptibility to other causes of mortality during the seed‐to‐seedling transition. Our study demonstrates that vertebrate seed predators can substantially reduce later‐successional seedling recruitment in restored forests and should be considered alongside dispersal limitation and microsite conditions as factors slowing forest recovery. Abstract in Spanish is available with online material. 
    more » « less
  5. Harrison, Rhett (Ed.)
    ABSTRACT Belowground resources are key determinants of seedling growth and survival in tropical forests. Nutrients and light may limit plant growth the most in tropical wet forests, whereas water may limit plant growth more in tropical dry forests. Nitrogen (N)‐fixing species play an important role in the nitrogen and carbon cycles across tropical dry forests. However, studies investigating the joint effects of water and nutrients on the physiology and performance of N‐fixing species are scarce. We implemented a full factorial shade house experiment that manipulated water and nutrients (NPK 20:20:20 and complete micronutrients) using eight tree species representing N‐fixing and non‐fixing tree species in the tropical dry forest of Costa Rica to determine: (1) How plant responses to water and nutrient availability vary between N‐fixing and non‐fixing tree species?; and (2) How nutrient and/or water availability influences seedling water‐ and nutrient‐use traits? We found that growth and physiological responses to water and nutrient addition depended directly on the capacity of species to fix atmospheric N2. N‐fixing species responded more strongly to nutrient addition, accumulating 67% more total biomass on average (approximately double that of non‐fixing taxa) and increasing average height growth rate by 41%. N‐fixing species accumulated more biomass without compromising water‐use efficiency, taking full advantage of the increased nutrient availability. Interestingly, results from our experiment show that increased water availability rarely influenced tropical dry forest seedling performance, whereas nutrient availability had a strong effect on biomass and growth. Overall, our results highlight the ability of N‐fixing seedlings to take advantage of local soil resource heterogeneity, which may help to explain the dominance of N‐fixing trees in tropical dry forests. 
    more » « less