skip to main content
US FlagAn official website of the United States government
dot gov icon
Official websites use .gov
A .gov website belongs to an official government organization in the United States.
https lock icon
Secure .gov websites use HTTPS
A lock ( lock ) or https:// means you've safely connected to the .gov website. Share sensitive information only on official, secure websites.


Title: Unifying fluidic excretion across life from cicadas to elephants
Can insects weighing mere grams challenge our current understanding of fluid dynamics in urination, jetting fluids like their larger mammalian counterparts? Current fluid urination models, predominantly formulated for mammals, suggest that jetting is confined to animals over 3 kg, owing to viscous and surface tension constraints at microscales. Our findings defy this paradigm by demonstrating that cicadas—weighing just 2 g—possess the capability for jetting fluids through remarkably small orifices. Using dimensional analysis, we introduce a unifying fluid dynamics scaling framework that accommodates a broad range of taxa, from surface-tension-dominated insects to inertia and gravity-reliant mammals. This study not only refines our understanding of fluid excretion across various species but also highlights its potential relevance in diverse fields such as ecology, evolutionary biology, and biofluid dynamics.  more » « less
Award ID(s):
1941933 2310691 2310741 1806833
PAR ID:
10505682
Author(s) / Creator(s):
;
Publisher / Repository:
PNAS
Date Published:
Journal Name:
Proceedings of the National Academy of Sciences
Volume:
121
Issue:
13
ISSN:
0027-8424
Format(s):
Medium: X
Sponsoring Org:
National Science Foundation
More Like this
  1. In this paper, we study the dynamics of fluids in porous media governed by Darcy’s law: the Muskat problem. We consider the setting of two immiscible fluids of different densities and viscosities under the influence of gravity in which one fluid is completely surrounded by the other. This setting is gravity unstable because along a portion of the interface, the denser fluid must be above the other. Surprisingly, even without capillarity, the circle-shaped bubble is a steady state solution moving with vertical constant velocity determined by the density jump between the fluids. Taking advantage of our discovery of this steady state, we are able to prove global in time existence and uniqueness of dynamic bubbles of nearly circular shapes under the influence of surface tension. We prove this global existence result for low regularity initial data. Moreover, we prove that these solutions are instantly analytic and decay exponentially fast in time to the circle. 
    more » « less
  2. null (Ed.)
    The jetting phenomenon associated with droplet impact upon a hydrophilic micropillared substrate was analyzed in detail using a high-speed camera. Viscosities of the fluids were varied using differing concentrations of glycerol in deionized water. This paper aims to connect similarities between this form of capillary jetting and another well-known jetting phenomenon from the bubble bursting. Both experience a cavity collapse when opposing fluid fronts collide which causes a singularity at the liquid surface, thus leading to the occurrence of jetting. Following processes used to define scaling laws for bubble bursting, a similar approach was taken to derive scaling laws for the dimensionless jet height, jet radius, base height, and radius of the jet base with respect to dimensionless time for the jetting phenomenon associated with the droplet impact. The development of a top droplet before the breakup of the jet also allows the examination of a scaling law for the necking diameter. We find that with the proper scaling factors, the evolution of the jet profile can collapse into a master profile for different fluids and impact velocities. The time dependence of the necking diameter before the jet breakup follows the power law with an exponent of ~2/3. Contrastingly, for other jet parameters such as the radius and height, the power law relationship with time dependence was not found to have a clear pattern that emerged from these studies. 
    more » « less
  3. Contact lines at a three-phase boundary (solid, liquid and air) play an essential role in the dynamics of the free surface of liquids in surface-tension-dominated fluids. While previous studies on the contact line effect have mainly focused on frequency and damping of standing wave modes in capillary dynamics, our study focuses on the contact line effect on capillary-gravity wave scattering from barriers. Models have predicted the contact line effects on capillary-gravity wave scattering from a barrier in ideal fluid configurations, but the lack of experimental data has hindered the progress. This research presents an experimental study that utilizes an acoustic approach to measure variations of the scattering with the barrier depth, barrier width, and surface wave frequency. Our study provides both evidence and quantitative measurements of the contact line effect on capillary-gravity wave scattering in realistic fluid configurations. 
    more » « less
  4. Abstract Food consumption and waste elimination are vital functions for living systems. Although how feeding impacts animal form and function has been studied for more than a century since Darwin, how its obligate partner, excretion, controls and constrains animal behavior, size, and energetics remains largely unexplored. Here we study millimeter-scale sharpshooter insects (Cicadellidae) that feed exclusively on a plant’s xylem sap, a nutrient-deficit source (95% water). To eliminate their high-volume excreta, these insects exploit droplet superpropulsion, a phenomenon in which an elastic projectile can achieve higher velocity than the underlying actuator through temporal tuning. We combine coupled-oscillator models, computational fluid dynamics, and biophysical experiments to show that these insects temporally tune the frequency of their anal stylus to the Rayleigh frequency of their surface tension-dominated elastic drops as a single-shot resonance mechanism. Our model predicts that for these tiny insects, the superpropulsion of droplets is energetically cheaper than forming jets, enabling them to survive on an extreme energy-constrained xylem-sap diet. The principles and limits of superpropulsion outlined here can inform designs of energy-efficient self-cleaning structures and soft engines to generate ballistic motions. 
    more » « less
  5. ABSTRACT: The presence of asphaltene at both fluid−fluid and fluid−solid interfaces has a wide impact on petroleum recovery processes, for example, by stabilizing oil−gas−water dispersions, adsorbing on reservoir rock surfaces and thus changing their wetting properties, and forming deposits in oil−gas production systems. The Yen-Mullins model for asphaltene behavior in bulk fluids provides a framework for understanding a diverse range of phenomena related to the adsorption dynamics of asphaltene at interfaces and how the adsorbed layers are structured. In this work, we address the relatively less explored parameter, which is accounting for the size and shape of the particles on the interfacial properties and emulsion stability. We discuss our investigations of the asphaltene adsorption and its effects, focusing on oil−water interfaces, and propose a lattice-gas model to explain the experimental observations of the interfacial tension and rheology. 
    more » « less