skip to main content
US FlagAn official website of the United States government
dot gov icon
Official websites use .gov
A .gov website belongs to an official government organization in the United States.
https lock icon
Secure .gov websites use HTTPS
A lock ( lock ) or https:// means you've safely connected to the .gov website. Share sensitive information only on official, secure websites.


Title: GraphNILM: A Graph Neural Network for Energy Disaggregation
Non-Intrusive Load Monitoring (NILM) remains a critical issue in both commercial and residential energy management, with a key challenge being the requirement for individual appliance-specific deep learning models. These models often disregard the interconnected nature of loads and usage patterns, stemming from diverse user behavior. To address this, we introduce GraphNILM, an innovative end-to-end model that leverages graph neural networks to deliver appliance-level energy usage analysis for an entire home. In its initial phase, GraphNILM employs Gaussian random variables to depict the graph edges, later enhancing prediction accuracy by substituting these edges with observations of appliance interrelationships, stripping the individual load enery from the aggregated main energy all at one time, resulting in reduced memory usage, especially with more than three loads involved, thus presenting a time and space-efficient solution for real-world implementation. Comprehensive testing on popular NILM datasets confirms that our model outperforms existing benchmarks in both accuracy and memory consumption, suggesting its considerable promise for future deployment in edge devices.  more » « less
Award ID(s):
2153369
PAR ID:
10505936
Author(s) / Creator(s):
Publisher / Repository:
Springer Nature Singapore
Date Published:
Journal Name:
Pacific-Asia Conference on Knowledge Discovery and Data Mining
Format(s):
Medium: X
Sponsoring Org:
National Science Foundation
More Like this
  1. Residential buildings constitute roughly one-fourth of the total energy use across the globe. Numerous studies have shown that providing an energy breakdown increases residents' awareness of energy use and can help save up to 15% energy. A significant amount of prior work has looked into source-separation techniques collectively called non-intrusive load monitoring (NILM), and most prior NILM research has leveraged high-frequency household aggregate data for energy breakdown. However, in practice most smart meters only sample hourly or once every 15 minutes, and existing NILM techniques show poor performance at such a low sampling rate. In this paper, we propose a TreeCNN model for energy breakdown on low frequency data. There are three key insights behind the design of our model: i) households consume energy with regular temporal patterns, which can be well captured by filters learned in CNNs; ii) tree structure isolates the pattern learning of each appliance that helps avoid magnitude variance problem, while preserves relationship among appliances; iii) tree structure enables the separation of known appliance from unknown ones, which de-noises the input time series for better appliance-level reconstruction. Our TreeCNN model outperformed seven existing baselines on a public benchmark dataset with lower estimation error and higher accuracy on detecting the active states of appliances. 
    more » « less
  2. To promote energy-efficient operations in residential and office buildings, non-intrusive load monitoring (NILM) techniques have been proposed to infer the fine-grained power consumption and usage patterns of appliances from power-line measurement data. Fine-grained monitoring of everyday appliances (such as toasters and coffee makers) can not only promote energy-efficient building operations, but also provide unique insights into the context and activities of individuals. Current building-level NILM techniques are unable to identify the consumption characteristics of relatively low-load appliances, whereas smart-plug based solutions incur significant deployment and maintenance costs. In this paper, we investigate an intermediate architecture, where smart circuit breakers provide measurements of aggregate power consumption at room (or section) level granularity. We then investigate techniques to identify the usage and energy consumption of individual appliances from such measurements. We first develop a novel correlation-based approach called CBPA to identify individual appliances based on both their unique transient and steady-state power signatures. While promising, CBPA fails when the set of candidate appliances is too large. To further improve the accuracy of appliance level usage estimation, we then propose a hybrid system called AARPA, which uses mobile sensing to first infer high-level activities of daily living (ADLs), and then uses knowledge of such ADLs to effectively reduce the set of candidate appliances that potentially contribute to the aggregate readings at any point. We evaluate two variants of this algorithm, and show, using real-life data traces gathered from 10 domestic users, that our fusion of mobile and power-line sensing is very promising: it identified all devices that were used in each data trace, and it identified the usage duration and energy consumption of low-load consumer appliances with 87% accuracy. 
    more » « less
  3. Fine-grained monitoring of everyday appliances can provide better feedback to the consumers and motivate them to change behavior in order to reduce their energy usage. It also helps to detect abnormal power consumption events, long-term appliance malfunctions and potential safety concerns. Commercially available plug meters can be used for individual appliance monitoring but for an entire house, each such individual plug meters are expensive and tedious to setup. Alternative methods relying on Non-Intrusive Load Monitoring techniques help disaggregate electricity consumption data and learn about the individual appliance's power states and signatures. However fine-grained events (e.g., appliance malfunctions, abnormal power consumption, etc.) remain undetected and thus inferred contexts (such as safety hazards etc.) become invisible. In this work, we correlate an appliance's inherent acoustic noise with its energy consumption pattern individually and in presence of multiple appliances. We initially investigate classification techniques to establish the relationship between appliance power and acoustic states for efficient energy disaggregation and abnormal events detection. While promising, this approach fails when there are multiple appliances simultaneously in `ON' state. To further improve the accuracy of our energy disaggregation algorithm, we propose a probabilistic graphical model, based on a variation of Factorial Hidden Markov Model (FHMM) for multiple appliances energy disaggregation. We combine our probabilistic model with the appliances acoustic analytics and postulate a hybrid model for energy disaggregation. Our approach helps to improve the performance of energy disaggregation algorithms and provide critical insights on appliance longevity, abnormal power consumption, consumer behavior and their everyday lifestyle activities. We evaluate the performance of our proposed algorithms on real data traces and show that the fusion of acoustic and power signatures can successfully detect a number of appliances with 95% accuracy. 
    more » « less
  4. Providing itemized energy consumption in a utility bill is becoming a priority, and perhaps a business practice in the near term. In recent times, a multitude of systems have been developed such as smart plugs, smart circuit breakers etc., for non-intrusive load monitoring (NILM). They are integrated either with the smart meters or at the plug-levels to footprint appliance-level energy consumption patterns in an entire home environment While deploying the existing technologies in a single home is feasible, scaling these technological advancements across thousands of homes in a region is not realized yet. This is primarily due to the cost, deployment complexity, and intrusive nature associated with these types of real deployment. Motivated by these shortcomings, in this paper we investigate the first step to address scalable disaggregation by proposing a disaggregation mechanism that works on a large dataset to accurately deconstruct the cumulative signals. We propose an iterative noise separation based approach to perform energy disaggregation using sparse coding based methodologies which work at the single ingress point of a home, i.e., at the meter level. We performed a ranked iterative signal removal methodology that effectively isolates appliances' individual signal waveform as noise on an aggregate energy datasets with moderate granularity (1 min). We performed experiments on real dataset and obtained approximately 94% energy disaggregation, i.e., disaggregated appliance-wise signal estimation accuracy. 
    more » « less
  5. Air leakages pose a major problem in both residential and commercial buildings. They increase the utility bill and result in excessive usage of Heating Ventilation and Air Conditioning (HVAC) systems, which impacts the environment and causes discomfort to residents. Repairing air leakages in a building is an expensive and time intensive task. Even detecting the leakages can require extensive professional testing. In this paper, we propose a method to identify the leaky homes from a set, provided their energy consumption data is accessible from residential smart meters. In the first phase, we employ a Non-Intrusive Load Monitoring (NILM) technique to disaggregate the HVAC data from total power consumption for several homes. We propose a recurrent neural network and a denoising autoencoder based approach to identify the 'ON' and 'OFF' cycles of the HVACs and their overall usages. We categorize the typical HVAC consumption of about 200 homes and any probable insulation and leakage problems using the Air Changes per Hour at 50 Pa (ACH50) metric in the Dataport datasets. We perform our proposed NILM analysis on different granularities of smart meter data such as 1 min, 15 mins, and 1 hour to observe its effect on classifying the leaky homes. Our results show that disaggregation can be used to identify the residential air-conditioning, at 1 min granularity which in turn helps us to identify the leaky potential homes, with an accuracy of 86%. 
    more » « less