skip to main content
US FlagAn official website of the United States government
dot gov icon
Official websites use .gov
A .gov website belongs to an official government organization in the United States.
https lock icon
Secure .gov websites use HTTPS
A lock ( lock ) or https:// means you've safely connected to the .gov website. Share sensitive information only on official, secure websites.


Title: Phonon-mediated quantum efficiency measurement in semiconductors
Accurate quantum efficiency measurement not only provides crucial information for the photovoltaic cell industry but also supports experiments aimed at directly detecting dark matter and elastic neutrino interactions. The dark matter direct searches paradigm has recently expanded to include particles with masses below 1,MeV/c2, where the expected signal in an electron–recoil interaction is approximately in the eV range, just above the energy gap for silicon and germanium. A robust calibration method for ionization signals in this lower energy region is essential. This paper presents a method for measuring quantum efficiency and yield (q/E) in semiconductors using phonon-mediated calorimetry. The Neganov–Trofimov–Luke phonon amplification method in low-temperature semiconductor crystals has been employed to indirectly measure ionization down to single-electron accuracy. Specifically, at zero bias, the phonon readout directly quantifies the total energy deposited within the detector, independent of the ionization yield. This eliminates a significant source of systematic uncertainty in quantum efficiency estimates associated with total energy uncertainty. The paper includes results from an updated ionization efficiency measurement in a germanium detector.  more » « less
Award ID(s):
1743790
PAR ID:
10560397
Author(s) / Creator(s):
;
Publisher / Repository:
APS
Date Published:
Journal Name:
Applied Physics Letters
Volume:
124
Issue:
21
ISSN:
0003-6951
Format(s):
Medium: X
Sponsoring Org:
National Science Foundation
More Like this
  1. Abstract The futureRicochetexperiment aims to search for new physics in the electroweak sector by measuring the Coherent Elastic Neutrino-Nucleus Scattering process from reactor antineutrinos with high precision down to the sub-100 eV nuclear recoil energy range. While theRicochetcollaboration is currently building the experimental setup at the reactor site, it is also finalizing the cryogenic detector arrays that will be integrated into the cryostat at the Institut Laue Langevin in early 2024. In this paper, we report on recent progress from the Ge cryogenic detector technology, called the CryoCube. More specifically, we present the first demonstration of a 30 eVee (electron equivalent) baseline ionization resolution (RMS) achieved with an early design of the detector assembly and its dedicated High Electron Mobility Transistor (HEMT) based front-end electronics with a total input capacitance of about 40 pF. This represents an order of magnitude improvement over the best ionization resolutions obtained on similar phonon-and-ionization germanium cryogenic detectors from the EDELWEISS and SuperCDMS dark matter experiments, and a factor of three improvement compared to the first fully-cryogenic HEMT-based preamplifier coupled to a CDMS-II germanium detector with a total input capacitance of 250 pF. Additionally, we discuss the implications of these results in the context of the futureRicochetexperiment and its expected background mitigation performance. 
    more » « less
  2. Abstract For the first time, time-dependent internal charge amplification through impact ionization has been observed in a planar germanium (Ge) detector operated at cryogenic temperature. In a time period of 30 and 45 min after applying a bias voltage, the charge energy corresponding to a baseline of the 59.54 keV$$\gamma $$ γ rays from a$$^{241}$$ 241 Am source is amplified for a short period of time and then decreases back to the baseline. The amplification of charge energy depends strongly on the applied positive bias voltage with drifting holes across the detector. No such phenomenon is visible with drifting electrons across the detector. We find that the observed charge amplification is dictated by the impact ionization of charged states, which has a strong correlation with impurity level and applied electric field. We analyze the dominant physics mechanisms that are responsible for the creation and the impact ionization of charged states. Our analysis suggests that the appropriate level of impurity in a Ge detector can enhance charge yield through the impact ionization of charged states to achieve extremely low-energy detection threshold (< 10 meV) for MeV-scale dark matter searches if the charge amplification can be stabilized. 
    more » « less
  3. null (Ed.)
    Finding unambiguous evidence of dark matter interactions in a particle detector is a main objective of physics research. The liquid argon time projection chamber technique for the detection of Weakly Interacting Massive Particles (WIMP) allows sensitivities down to the so-called neutrino floor for high and low WIMP masses. Based on the successful operation of the DarkSide-50 detector, a new and more sensitive experiment, DarkSide-20k, was designed and is now under construction. A thorough understanding of the DarkSide-50 detector response to events classified as dark matter as well as all other interactions is essential for an optimal design of the new experiment. In this paper, we report on a particular set of events, for which scintillation-ionization signals are observed in association with signals from single or few isolated electrons. We identified and provided an interpretation for two event types in which electrons are produced via photoelectric effect on the cathode electrode and in the bulk liquid. Events with photoelectric emissions are observed in association with most interactions with large energy depositions in the detector. From the measured rate of these events, we determine the photo-ionization probability, or photoelectric quantum efficiency, of tetraphenyl butadiene (TPB) at wavelengths around 128 nm. 
    more » « less
  4. Baracchini, Elisabetta (Ed.)
    The Scintillating Bubble Chamber (SBC) collaboration is developing liquid-noble bubble chambers for the detection of sub-keV nuclear recoils. These detectors benefit from the electron recoil rejection inherent in moderately-superheated bubble chambers with the addition of energy reconstruction provided from the scintillation signal. The ability to measure low-energy nuclear recoils allows the search for GeV-scale dark matter and the measurement of coherent elastic neutrino-nucleus scattering on argon from MeV-scale reactor antineutrinos. The first physics-scale detector, SBC-LAr10, is in the commissioning phase at Fermilab, where extensive engineering and calibration studies will be performed. In parallel, a functionally identical low-background version, SBC-SNOLAB, is being built for a dark matter search underground at SNOLAB. SBC-SNOLAB, with a 10 kg-yr exposure, will have sensitivity to a dark matter–nucleon cross section of 2×10−42 cm2 at 1 GeV/c2 dark matter mass, and future detectors could reach the boundary of the argon neutrino fog with a tonne-yr exposure. In addition, the deployment of an SBC detector at a nuclear reactor could enable neutrino physics investigations including measurements of the weak mixing angle and searches for sterile neutrinos, the neutrino magnetic moment, and the light Z’ gauge boson. 
    more » « less
  5. Charge trapping degrades the energy resolution of germanium (Ge) detectors, which require to have increased experimental sensitivity in searching for dark matter and neutrinoless double-beta decay. We investigate the charge trapping processes utilizing nine planar detectors fabricated from USD-grown crystals with well-known net impurity levels. The charge collection efficiency as a function of charge trapping length is derived from the Shockley-Ramo theorem. Furthermore, we develop a model that correlates the energy resolution with the charge collection efficiency. This model is then applied to the experimental data. As a result, charge collection efficiency and charge trapping length are determined accordingly. Utilizing the Lax model (further developed by CDMS collaborators), the absolute impurity levels are determined for nine detectors. The knowledge of these parameters when combined with other traits such as the Fano factor serve as a reliable indicator of the intrinsic nature of charge trapping within the crystals. We demonstrate that electron trapping is more severe than hole trapping in a p-type detector and the charge collection efficiency depends on the absolute impurity level of the Ge crystal when an adequate bias voltage is applied to the detector. Negligible charge trapping is found when the absolute impurity level is less than 1.0$$\times$$10$^11/3$ for collecting electrons and 2.0$$\times$$10$^11/3$ for collecting holes. 
    more » « less