Abstract Carrier mobility in doped conjugated polymers is limited by Coulomb interactions with dopant counterions. This complicates studying the effect of the dopant's oxidation potential on carrier generation because different dopants have different Coulomb interactions with polarons on the polymer backbone. Here, dodecaborane (DDB)‐based dopants are used, which electrostatically shield counterions from carriers and have tunable redox potentials at constant size and shape. DDB dopants produce mobile carriers due to spatial separation of the counterion, and those with greater energetic offsets produce more carriers. Neutron reflectometry indicates that dopant infiltration into conjugated polymer films is redox‐potential‐driven. Remarkably, X‐ray scattering shows that despite their large 2‐nm size, DDBs intercalate into the crystalline polymer lamellae like small molecules, indicating that this is the preferred location for dopants of any size. These findings elucidate why doping conjugated polymers usually produces integer, rather than partial charge transfer: dopant counterions effectively intercalate into the lamellae, far from the polarons on the polymer backbone. Finally, it is shown that the IR spectrum provides a simple way to determine polaron mobility. Overall, higher oxidation potentials lead to higher doping efficiencies, with values reaching 100% for driving forces sufficient to dope poorly crystalline regions of the film.
more »
« less
Combination of Counterion Size and Doping Concentration Determines the Electronic and Thermoelectric Properties of Semiconducting Polymers
Abstract In both chemical and electrochemical doping of organic semiconductors (OSCs), a counterion, either from the electrolyte or ionized dopant, balances the charge introduced to the OSC. Despite the large influence of this counterion on OSC optical and electronic response, there remains substantial debate on how a fundamental parameter, ion size, impacts these properties. This work resolves much of this debate by accounting for two doping regimes. In the low‐doping regime, the Coulomb binding energies between charge carriers on the OSC and the counterions are significant, and larger counterions lead to decreased Coulomb interactions, more delocalized charge carriers, and higher electrical conductivities. In the high‐doping regime, the Coulomb binding energies become negligible due to the increased dielectric constant of the films and a smoothing of the energy landscape; thereby, the electrical conductivities depend primarily on the extent of morphological disorder in the OSC. Moreover, in regioregular poly(3‐hexylthiophene), rr‐P3HT, smaller counterions lead to greater bipolaron concentrations in the low‐doping regime due to the increased Coulomb interactions. Emphasizing the impact of the counterion size, it is shown that larger counterions can lead to increased thermoelectric power factors for rr‐P3HT.
more »
« less
- Award ID(s):
- 1905734
- PAR ID:
- 10508334
- Publisher / Repository:
- Wiley Blackwell (John Wiley & Sons)
- Date Published:
- Journal Name:
- Advanced Materials
- Volume:
- 36
- Issue:
- 29
- ISSN:
- 0935-9648
- Format(s):
- Medium: X
- Sponsoring Org:
- National Science Foundation
More Like this
-
-
Electrical conductimetry and dynamic light scattering (DLS) were used to investigate the aggregation behaviors of four amino acid-based surfactants (AABSs; undecanoyl-glycine, undecanoyl-l-alanine, undecanoyl-l-valine, undecanoyl-l-leucine) in the presence of five linear diamine counterions (1,2-diaminoethane, 1,3-diaminopropane, 1,4-diaminobutane, 1,5-diaminopentane, 1,6-diaminohexane). Electrical conductimetry was used to measure the CMCs for each system, which ranged from 5.1 to 22.5 mM. With respect to counterions, the obtained CMCs decreased with increases in the interamine spacer length; this was attributed to the improved torsional binding flexibility in longer counterions. Strong linear correlations (mean R2 = 0.9443) were observed between the CMCs and predicted surfactant partition coefficients (logP; water/octanol), suggesting that micellization is primarily driven by the AABS’s hydrophobicity for these systems. However, significant deviations in this linear relationship were observed for systems containing 1,2-diaminoethane, 1,4-diaminobutane, and 1,6-diaminohexane (p = 0.0774), suggesting altered binding dynamics for these counterions. pH measurements during the CMC determination experiments indicated the full deprotonation of the AABSs but did not give clear insights into the counterion protonation states, thus yielding an inconclusive evaluation of their charge stabilization effects during binding. However, DLS measurements revealed that the micellar size remained largely independent of the counterion length for counterions longer than 1,2-diaminoethane, with hydrodynamic diameters ranging from 2.2 to 2.8 nm. This was explained by the formation of charge-stabilized noncovalent dimers, with each counterion bearing a full +2 charge. Conductimetry-based estimates of the degrees of counterion binding (β) and free energies of micellization (ΔG°M) revealed that bulky AABSs exhibit preferential binding to counterions with an even number of methylene groups. It is proposed that when these counterions form noncovalent dimers, perturbations in their natural geometries result in the formation of a binding pocket that accommodates the AABS steric bulk. While the direct application of these systems remains to be seen, this study provides valuable insights into the structure–property relationships that govern AABS aggregation.more » « less
-
When an organic semiconductor (OSC) is blended with an electron acceptor molecule that can act as a p-type dopant, there should ideally be complete (integer) transfer of charge from the OSC to the dopant. However, some dopant–OSC blends instead form charge transfer complexes (CTCs), characterized by fractional charge transfer (CT) and strong orbital hybridization between the two molecules. Fractional CT doping does not efficiently generate free charge carriers, but it is unclear what conditions lead to incomplete charge transfer. Here we show that by modifying film processing conditions in the semiconductor–dopant couple poly(3-hexylthiophene):2,3,5,6-tetrafluoro-7,7,8,8,-tetracyanoquinodimethane (P3HT:F4TCNQ), we can selectively obtain nearly pure integer or fractional CT phases. Fractional CT films show electrical conductivities approximately 2 orders of magnitude lower than corresponding integer CT films, and remarkably different optical absorption spectra. Grazing incidence wide-angle X-ray diffraction (GIXD) reveals that fractional CT films display an unusually dense and well-ordered crystal structure. These films show lower paracrystallinity and shorter lamellar and π-stacking distances than undoped films processed under similar conditions. Using plane-wave DFT we obtain a structure with unit cell parameters closely matching those observed by GIXD. This first-ever observation of both fractional and integer CT in a single OSC–dopant system demonstrates the importance of structural effects on OSC doping and opens the door to further studies.more » « less
-
The binding of linear diamine counterions with different methylene chain lengths to the amino-acid-based surfactants undecanoic L-isoleucine (und-IL) and undecanoic L-norleucine (und-NL) was investigated with NMR spectroscopy. The counterions studied were 1,2-ethylenediamine, 1,3-diaminopropane, 1,4-diaminobutane, 1,5-diaminopentane, and 1,6-diaminohexane. These counterions were all linear diamines with varying spacer chain lengths between the two amine functional groups. The sodium counterion was studied as well. Results showed that when the length of the counterion methylene chain was increased, the surfactants’ critical micelle concentrations (CMC) decreased. This decrease was attributed to diamines with longer methylene chains binding to multiple surfactant monomers below the CMC and thus acting as templating agents for the formation of micelles. The entropic hydrophobic effect and differences in diamine counterion charge also contributed to the size of the micelles and the surfactants’ CMCs in the solution. NMR diffusion measurements showed that the micelles formed by both surfactants were largest when 1,4-diaminobutane counterions were present in the solution. This amine also had the largest mole fraction of micelle-bound counterions. Finally, the und-NL micelles were larger than the und-IL micelles when 1,4-diaminobutane counterions were bound to the micelle surface. A model was proposed in which this surfactant formed non-spherical aggregates with both the surfactant molecules’ hydrocarbon chains and n-butyl amino acid side chains pointing toward the micelle core. The und-IL micelles, in contrast, were smaller and likely spherically shaped.more » « less
-
Doping is required to increase the electrical conductivity of organic semiconductors for uses in electronic and energy conversion devices. The limited number of commonly used p-type dopants suggests that new dopants or doping mechanisms could improve the efficiency of doping and provide new means for processing doped polymers. Drawing on Lewis acid–base pair chemistry, we combined Lewis acid dopant B(C 6 F 5 ) 3 (BCF) with the weak Lewis base benzoyl peroxide (BPO). The detailed behavior of p-type doping of the model polymer poly(3-hexylthiophene) (P3HT) with this Lewis acid–base pair in solution was examined. Solution 19 F-NMR spectra confirmed the formation of the expected counterion, as well as side products from reactions with solvent. BCF : BPO was also found to efficiently dope a range of semiconducting polymers with varying chemical structures demonstrating that the BCF : BPO combination has an effective electron affinity of at least 5.3 eV. In thin films of regioregular P3HT cast from the doped solutions, delocalized polarons formed due to the large counterions leading to a large polaron-counterion distance. At and above 0.2 eq. BCF : BPO doping, amorphous areas of the film became doped, disrupting the structural order of the films. Despite the change in structural order, thin films of regioregular P3HT doped with 0.2 eq. BCF : BPO had a conductivity of 25 S cm −1 . This study demonstrates the effectiveness of a two-component Lewis acid–base doping mechanism and suggests additional two-component Lewis acid–base chemistries should be explored.more » « less
An official website of the United States government
