skip to main content
US FlagAn official website of the United States government
dot gov icon
Official websites use .gov
A .gov website belongs to an official government organization in the United States.
https lock icon
Secure .gov websites use HTTPS
A lock ( lock ) or https:// means you've safely connected to the .gov website. Share sensitive information only on official, secure websites.


This content will become publicly available on December 1, 2025

Title: Experimental demonstration of an on-chip p-bit core based on stochastic magnetic tunnel junctions and 2D MoS2 transistors
Probabilistic computing is a computing scheme that offers a more efficient approach than conventional complementary metal-oxide–semiconductor (CMOS)-based logic in a variety of applications ranging from optimization to Bayesian inference, and invertible Boolean logic. The probabilistic bit (or p-bit, the base unit of probabilistic computing) is a naturally fluctuating entity that requires tunable stochasticity; by coupling low-barrier stochastic magnetic tunnel junctions (MTJs) with a transistor circuit, a compact implementation is achieved. In this work, by combining stochastic MTJs with 2D-MoS2field-effect transistors (FETs), we demonstrate an on-chip realization of a p-bit building block displaying voltage-controllable stochasticity. Supported by circuit simulations, we analyze the three transistor-one magnetic tunnel junction (3T-1MTJ) p-bit design, evaluating how the characteristics of each component influence the overall p-bit output. While the current approach has not reached the level of maturity required to compete with CMOS-compatible MTJ technology, the design rules presented in this work are valuable for future experimental implementations of scaled on-chip p-bit networks with reduced footprint.  more » « less
Award ID(s):
2106501
PAR ID:
10508900
Author(s) / Creator(s):
; ; ; ; ; ;
Publisher / Repository:
Nature
Date Published:
Journal Name:
Nature Communications
Volume:
15
Issue:
1
ISSN:
2041-1723
Format(s):
Medium: X
Sponsoring Org:
National Science Foundation
More Like this
  1. Spin transfer torque magnetic random access memory (STT-MRAM) offers a promising solution for low-power and high-density memory due to its compatibility with CMOS, higher density, scalable nature, and non-volatility. However, the higher energy required to write bit cells has remained a key challenge for its adaptation into battery-operated smart handheld devices. The existing low-energy writing solutions require additional complex control logic mechanisms, further constraining the available area. In this research, we propose a solution to design energy-efficient write circuits by incorporating two techniques together. First, we propose the sinusoidal power clocking mechanism replacing the DC power supply in the conventional CMOS design. Second, we propose three lookup table (LUT)-based control logic circuits and one write circuit to reduce the area and further minimize energy dissipation. The experimental results are verified over the case study implementations of 4×4 STT-MRAM macro designed using bit cell configurations: i) one transistor and one magnetic tunnel junction (MTJ) (1T-1MTJ) and ii) four transistors and two MTJs (4T-2MTJ). The post-layout simulation for the frequency range from 250 kHz to 6.25 MHz shows that the write circuit, which uses the proposed LUT-based control logic circuits and a write driver with a sinusoidal power supply, achieves more than a 65.05% average energy saving compared to the CMOS counterpart. Furthermore, the write circuit, which uses the proposed 6T write driver with the sinusoidal power supply, shows an improvement in energy saving by more than 70.60% compared to the CMOS counterpart. We also verified that the energy-saving performance remains relatively consistent with the change in temperature and the tunneling magnetoresistance (TMR) ratio. 
    more » « less
  2. Abstract Bayesian networks (BNs) find widespread application in many real-world probabilistic problems including diagnostics, forecasting, computer vision, etc. The basic computing primitive for BNs is a stochastic bit (s-bit) generator that can control the probability of obtaining ‘1’ in a binary bit-stream. While silicon-based complementary metal-oxide-semiconductor (CMOS) technology can be used for hardware implementation of BNs, the lack of inherent stochasticity makes it area and energy inefficient. On the other hand, memristors and spintronic devices offer inherent stochasticity but lack computing ability beyond simple vector matrix multiplication due to their two-terminal nature and rely on extensive CMOS peripherals for BN implementation, which limits area and energy efficiency. Here, we circumvent these challenges by introducing a hardware platform based on 2D memtransistors. First, we experimentally demonstrate a low-power and compact s-bit generator circuit that exploits cycle-to-cycle fluctuation in the post-programmed conductance state of 2D memtransistors. Next, the s-bit generators are monolithically integrated with 2D memtransistor-based logic gates to implement BNs. Our findings highlight the potential for 2D memtransistor-based integrated circuits for non-von Neumann computing applications. 
    more » « less
  3. Abstract Probabilistic (p-) computing is a physics-based approach to addressing computational problems which are difficult to solve by conventional von Neumann computers. A key requirement for p-computing is the realization of fast, compact, and energy-efficient probabilistic bits. Stochastic magnetic tunnel junctions (MTJs) with low energy barriers, where the relative dwell time in each state is controlled by current, have been proposed as a candidate to implement p-bits. This approach presents challenges due to the need for precise control of a small energy barrier across large numbers of MTJs, and due to the need for an analog control signal. Here we demonstrate an alternative p-bit design based on perpendicular MTJs that uses the voltage-controlled magnetic anisotropy (VCMA) effect to create the random state of a p-bit on demand. The MTJs are stable (i.e. have large energy barriers) in the absence of voltage, and VCMA-induced dynamics are used to generate random numbers in less than 10 ns/bit. We then show a compact method of implementing p-bits by using VC-MTJs without a bias current. As a demonstration of the feasibility of the proposed p-bits and high quality of the generated random numbers, we solve up to 40 bit integer factorization problems using experimental bit-streams generated by VC-MTJs. Our proposal can impact the development of p-computers, both by supporting a fully spintronic implementation of a p-bit, and alternatively, by enabling true random number generation at low cost for ultralow-power and compact p-computers implemented in complementary metal-oxide semiconductor chips. 
    more » « less
  4. Abstract Magnetic random-access memory (MRAM) based on voltage-controlled magnetic anisotropy in magnetic tunnel junctions (MTJs) is a promising candidate for high-performance computing applications, due to its lower power consumption, higher bit density, and the ability to reduce the access transistor size when compared to conventional current-controlled spin-transfer torque MRAM. The key to realizing these advantages is to have a low MTJ switching voltage. Here, we report a perpendicular MTJ structure with a high voltage-controlled magnetic anisotropy coefficient ~130 fJ/Vm and high tunnel magnetoresistance exceeding 150%. Owing to the high voltage-controlled magnetic anisotropy coefficient, we demonstrate sub-nanosecond precessional switching of nanoscale MTJs with diameters of 50 and 70 nm, using a voltage lower than 1 V. We also show scaling of this switching mechanism down to 30 nm MTJs, with voltages close to 2 V. The results pave the path for the future development and application of voltage-controlled MRAMs and spintronic devices in emerging computing systems. 
    more » « less
  5. Probabilistic spin logic (PSL) has recently been proposed as a novel computing paradigm that leverages random thermal fluctuations of interacting bodies in a system rather than deterministic switching of binary bits. A PSL circuit is an interconnected network of thermally unstable units called probabilistic bits (p-bits), whose output randomly fluctuates between bits 0 and 1. While the fluctuations generated by p-bits are thermally driven, and therefore, inherently stochastic, the output probability is tunable with an external source. Therefore, information is encoded through probabilities of various configuration of states in the network. Recent studies have shown that these systems can efficiently solve various types of combinatorial optimization problems and Bayesian inference problems that modern computers are unfit for. Previous experimental studies have demonstrated that a single magnetic tunnel junctions (MTJ) designed to be thermally unstable can operate tunable random number generator making it an ideal hardware solution for p-bits. Most proposals for designing an MTJ to operate as a p-bit involve patterning the MTJ as a circular nano-pillar to make the device thermally unstable and then use spin transfer torque (STT) as a tuning mechanism. However, the practical realization of such devices is very challenging since the fluctuation rate of these devices are very sensitive to any device variations or defects caused during fabrication. Despite this challenge, MTJs are still the most promising hardware solution for p-bits because MTJs are very unique in that they can be tuned by multiple other mechanisms such spin orbit torque, magneto-electric coupling, and voltage-controlled exchange coupling. Furthermore, multiple forces can be used simultaneously to drive stochastic switching signals in MTJs. This means there are a large number of methods to tune, or termed as bias, MTJs that can be implemented in p-bit circuits that can alleviate the current challenges of conventional STT driven p-bits. This article serves as a review of all of the different methods that have been proposed to drive random fluctuations in MTJs to operate as a probabilistic bit. Not only will we review the single-biasing mechanisms, but we will also review all the proposed dual-biasing methods, where two independent mechanisms are employed simultaneously. These dual-biasing methods have been shown to have certain advantages such as alleviating the negative effects of device variations and some biasing combinations have a unique capability called ‘two-degrees of tunability’, which increases the information capacity in the signals generated. 
    more » « less