Abstract The effective population size (Ne) of an organism is expected to be generally proportional to the total number of individuals in a population. In parasites, we might expect the effective population size to be proportional to host population size and host body size, because both are expected to increase the number of parasite individuals. However, among other factors, parasite populations are sometimes so extremely subdivided that high levels of inbreeding may distort these predicted relationships. Here, we used whole-genome sequence data from dove parasites (71 feather louse species of the genus Columbicola) and phylogenetic comparative methods to study the relationship between parasite effective population size and host population size and body size. We found that parasite effective population size is largely explained by host body size but not host population size. These results suggest the potential local population size (infrapopulation or deme size) is more predictive of the long-term effective population size of parasites than is the total number of potential parasite infrapopulations (i.e., host individuals).
more »
« less
Testudo: Linear Time Prover SNARKs with Constant Size Proofs and Square Root Size Universal Setup
- Award ID(s):
- 1845125
- PAR ID:
- 10510273
- Publisher / Repository:
- Progress in Cryptology – LATINCRYPT 2023: 8th International Conference on Cryptology and Information Security in Latin America, LATINCRYPT 2023
- Date Published:
- Format(s):
- Medium: X
- Sponsoring Org:
- National Science Foundation
More Like this
-
-
Abstract A multivariate adiabatic connection (MAC) framework for describing dispersion interactions in a system consisting of N non-overlapping monomers is presented. By constraining the density to the physical ground-state density of the supersystem, the MAC enables a rigorous separation of induction and dispersion effects. The exact dispersion energy is obtained from the zero-temperature fluctuation–dissipation theorem and partitioned into increments corresponding to the interaction energy gained when an additional monomer is added to a K -monomer system. The total dispersion energy of an N -monomer system is independent of any partitioning into subsystems. This statement of dispersion size consistency is shown to be an exact constraint. The resulting additive separability of the dispersion energy results from multiplicative separability of the generalized screening factor defined as the inverse generalized dielectric function. Many-body perturbation theory (MBPT) is found to violate dispersion size-consistency because perturbative approximations to the generalized screening factor are nonseparable; on the other hand, random phase approximation-type methods produce separable generalized screening factors and therefore preserve dispersion size-consistency. This result further explains the previously observed increase in relative errors of MBPT for dispersion interactions as the system size increases. Implications for electronic structure theory and applications to supramolecular materials and condensed matter are discussed.more » « less
-
Abstract A model for tropical cyclone (TC) potential size (PS), which is capable of predicting the equilibrium outer radius of a TC solely from environmental parameters, is proposed. The model combines an updated Carnot cycle model with a physical model for the wind profile, which serve as energetic and dynamic constraints, respectively, on the minimum pressure. Physically, the Carnot cycle model defines how much the surface pressure can be dropped energetically, and the wind profile model defines how large the steady-state storm needs to be to yield that pressure drop for a given maximum wind speed. The model yields an intrinsic length scale V Carnot / f , with f the Coriolis parameter, V Carnot similar to the potential intensity V p , but without a dependence on the surface exchange coefficients of enthalpy C k and momentum C d . Analytic tests with the theory varying outflow temperature, sea surface temperature (SST), and f demonstrate that the model predictions are qualitatively consistent with the V p / f scaling for outer size found in past work. The model also predicts a weak dependence of outer size on C d , C k , and horizontal mixing length l h of turbulence, consistent with numerical simulation results. Idealized numerical simulation experiments with varied tropopause temperature, SST, f , C d , C k , and l h show that the model performs well in predicting the simulated outer radius. The V Carnot / f scaling also better captures the dependence of simulated TC size on SST than V p / f . Overall, the model appears to capture the essential physics that determine equilibrium TC size on the f plane.more » « less
An official website of the United States government

