Explainability is essential for AI models, especially in clinical settings where understanding the model’s decisions is crucial. Despite their impressive performance, black-box AI models are unsuitable for clinical use if their operations cannot be explained to clinicians. While deep neural networks (DNNs) represent the forefront of model performance, their explanations are often not easily interpreted by humans. On the other hand, hand-crafted features extracted to represent different aspects of the input data and traditional machine learning models are generally more understandable. However, they often lack the effectiveness of advanced models due to human limitations in feature design. To address this, we propose ExShall-CNN, a novel explainable shallow convolutional neural network for medical image processing. This model improves upon hand-crafted features to maintain human interpretability, ensuring that its decisions are transparent and understandable. We introduce the explainable shallow convolutional neural network (ExShall-CNN), which combines the interpretability of hand-crafted features with the performance of advanced deep convolutional networks like U-Net for medical image segmentation. Built on recent advancements in machine learning, ExShall-CNN incorporates widely used kernels while ensuring transparency, making its decisions visually interpretable by physicians and clinicians. This balanced approach offers both the accuracy of deep learning models and the explainability needed for clinical applications.
more »
« less
Push Past Green: Learning to Look Behind Plant Foliage by Moving It
Autonomous agriculture applications (e.g., inspection, phenotyping, plucking fruits) require manipulating the plant foliage to look behind the leaves and the branches. Partial visibility, extreme clutter, thin structures, and unknown geometry and dynamics for plants make such manipulation challenging. We tackle these challenges through data-driven methods. We use self-supervision to train SRPNet, a neural network that predicts what space is revealed on execution of a candidate action on a given plant. We use SRPNet with the cross-entropy method to predict actions that are effective at revealing space beneath plant foliage. Fur- thermore, as SRPNet does not just predict how much space is revealed but also where it is revealed, we can execute a sequence of actions that incrementally re- veal more and more space beneath the plant foliage. We experiment with a synthetic (vines) and a real plant (Dracaena) on a physical test-bed across 5 settings including 2 settings that test generalization to novel plant configurations. Our experiments reveal the effectiveness of our overall method, PPG, over a competitive hand-crafted exploration method, and the effectiveness of SRPNet over a hand- crafted dynamics model and relevant ablations.
more »
« less
- Award ID(s):
- 2143873
- PAR ID:
- 10510418
- Publisher / Repository:
- Proceedings of Machine Learning Research
- Date Published:
- Journal Name:
- Conference on Robot Learning
- Format(s):
- Medium: X
- Location:
- Atlanta
- Sponsoring Org:
- National Science Foundation
More Like this
-
-
null (Ed.)There has been an explosion of ideas in soft robotics over the past decade, resulting in unprecedented opportunities for end effector design. Soft robot hands offer benefits of low-cost, compliance, and customized design, with the promise of dexterity and robustness. The space of opportunities is vast and exciting. However, new tools are needed to understand the capabilities of such manipulators and to facilitate manipulation planning with soft manipulators that exhibit free-form deformations. To address this challenge, we introduce a sampling based approach to discover and model continuous families of manipulations for soft robot hands. We give an overview of the soft foam robots in production in our lab and describe novel algorithms developed to characterize manipulation families for such robots. Our approach consists of sampling a space of manipulation actions, constructing Gaussian Mixture Model representations covering successful regions, and refining the results to create continuous successful regions representing the manipulation family. The space of manipulation actions is very high dimensional; we consider models with and without dimensionality reduction and provide a rigorous approach to compare models across different dimensions by comparing coverage of an unbiased test dataset in the full dimensional parameter space. Results show that some dimensionality reduction is typically useful in populating the models, but without our technique, the amount of dimensionality reduction to use is difficult to predict ahead of time and can depend on the hand and task. The models we produce can be used to plan and carry out successful, robust manipulation actions and to compare competing robot hand designs.more » « less
-
Given a swarm of limited-capability robots, we seek to automatically discover the set of possible emergent behaviors. Prior approaches to behavior discovery rely on human feedback or hand-crafted behavior metrics to represent and evolve behaviors and only discover behaviors in simulation, without testing or considering the deployment of these new behaviors on real robot swarms. In this work, we present Real2Sim2Real Behavior Discovery via Self-Supervised Representation Learning, which combines representation learning and novelty search to discover possible emergent behaviors automatically in simulation and enable direct controller transfer to real robots. First, we evaluate our method in simulation and show that our proposed self-supervised representation learning approach outperforms previous hand-crafted metrics by more accurately representing the space of possible emergent behaviors. Then, we address the reality gap by incorporating recent work in sim2real transfer for swarms into our lightweight simulator design, enabling direct robot deployment of all behaviors discovered in simulation on an open-source and low-cost robot platform.more » « less
-
In this work, we investigate a form of dynamic contact-rich locomotion in which a robot pushes off from obstacles in order to move through its environment. We present a reflex-based approach that switches between optimized hand- crafted reflex controllers and produces smooth and predictable motions. In contrast to previous work, our approach does not rely on periodic movements, complex models of robot and contact dynamics, or extensive hand tuning. We demonstrate the effectiveness of our approach and evaluate its performance compared to a standard model-free RL algorithm. We identify continuous clusters of similar behaviours, which allows us to successfully transfer different push-off motions directly from simulation to a physical robot without further retraining.more » « less
-
Learning Granular Media Avalanche Behavior for Indirectly Manipulating Obstacles on a Granular SlopeLegged robot locomotion on sand slopes is challenging due to the complex dynamics of granular media and how the lack of solid surfaces can hinder locomotion. A promising strategy, inspired by ghost crabs and other organisms in nature, is to strategically interact with rocks, debris, and other obstacles to facilitate movement. To provide legged robots with this ability, we present a novel approach that leverages avalanche dynamics to indirectly manipulate objects on a granular slope. We use a Vision Transformer (ViT) to process image representations of granular dynamics and robot excavation actions. The ViT predicts object movement, which we use to determine which leg excavation action to execute. We collect training data from 100 real physical trials and, at test time, deploy our trained model in novel settings. Experimental results suggest that our model can accurately predict object movements and achieve a success rate ≥ 80% in a variety of manipulation tasks with up to four obstacles, and can also generalize to objects with different physics properties. To our knowledge, this is the first paper to leverage granular media avalanche dynamics to indirectly manipulate objects on granular slopes.more » « less
An official website of the United States government

