Connected and automated vehicles (CAVs) provide various valuable and advanced services to manufacturers, owners, mobility service providers, and transportation authorities. As a result, a large number of CAV applications have been proposed to improve the safety, mobility, and sustainability of the transportation system. With the increasing connectivity and automation, cybersecurity of the connected and automated transportation system (CATS) has raised attention to the transportation community in recent years. Vulnerabilities in CAVs can lead to breakdowns in the transportation system and compromise safety (e.g., causing crashes), performance (e.g., increasing congestion and reducing capacity), and fairness (e.g., vehicles fooling traffic signals). This paper presents our perspective on CATS cybersecurity via surveying recent pertinent studies focusing on the transportation system level, ranging from individual and multiple vehicles to the traffic network (including infrastructure). It also highlights threat analysis and risk assessment (TARA) tools and evaluation platforms, particularly for analyzing the CATS cybersecurity problem. Finally, this paper will provide valuable insights into developing secure CAV applications and investigating remaining open cybersecurity challenges that must be addressed.
more »
« less
Co-Benefits and Tradeoffs Between Safety, Mobility, and Environmental Impacts for Connected and Automated Vehicles
A large number of Connected and Automated Vehicle (CAV) applications are being designed, developed, and deployed in order to greatly improve our transportation systems in terms of safety, mobility, and reducing environmental impacts. These benefits can be quantified by a variety of performance measures that are often cited in the literature. However, most of these CAV applications are typically designed to improve transportation systems only in a particular dimension, usually focusing on either safety, mobility, or the environment. Very few research papers have considered a wider range or combination of performance measures across multiple dimensions, examining potential co-benefits or tradeoffs between these measures. For example, you can design a CAV application that greatly improves safety, but it might come at the cost of reducing traffic throughput. Further, the design of the CAV applications is often static and limited to specific traffic scenarios and conditions. CAVs that can adapt to different conditions, and be “tunable” for different societal needs will have much greater impact and versatility. In this presentation, we examine various co-benefits and tradeoffs of current CAV applications and consider how we can design these systems to have greater flexibility when it comes to deployment. We cite not only different CAV applications evaluated in simulation, but also real-world CAV deployments that operate on various testbeds, such as the Innovation Corridor located in Riverside, California. Based on this analysis, we can consider several new research directions for future CAV deployments.
more »
« less
- Award ID(s):
- 2152258
- PAR ID:
- 10511097
- Publisher / Repository:
- IEEE
- Date Published:
- Journal Name:
- IEEE Transactions on Intelligent Transportation Systems
- Volume:
- 25
- Issue:
- 4
- ISSN:
- 1524-9050
- Page Range / eLocation ID:
- 184 to 213
- Format(s):
- Medium: X
- Sponsoring Org:
- National Science Foundation
More Like this
-
-
Cooperative perception that integrates sensing capabilities from both infrastructure and vehicle perception sensors can greatly benefit the transportation system with respect to safety and data acquisition. In this study, we conduct a preliminary evaluation of such a system by integrating a portable lidar-based infrastructure detection system (namely, Traffic Scanner [TScan]) with a Society of Automotive Engineers (SAE) Level 4 connected and automated vehicle (CAV). Vehicle-to-everything (V2X) communication devices are installed on both the TScan and the CAV to enable real-time message transmission of detection results in the form of SAE J2735 basic safety messages. We validate the concept using a case study, which aims at improving CAV situation awareness and protecting vulnerable road user (VRU) safety. Field testing results demonstrate the safety benefits of cooperative perception from infrastructure sensors in detecting occluded VRUs and helping CAVs to plan safer (i.e., higher post-encroachment time) and smoother (i.e., lower deceleration rates) trajectories.more » « less
-
The advancements of connected vehicle (CV) technologies promise significant safety, mobility, and environmental benefits for future transportation systems. These benefits will largely rely on the market penetration rate (MPR) of CVs and connected infrastructure. However, higher MPR is not guaranteed to result in greater benefits in a transportation system in some cases even if we do not consider the deployment cost of CVs. Therefore, understanding the optimal CV MPR to achieve the best system benefits is informative and can provide some guidance for transportation agencies to use appropriate incentives or other policies to potentially affect the speed of CV adoption. Instead of using the traditional incremental method, this paper proposed a simulation-based approach combined with Bayesian optimization to determine the optimal CV MPR that achieves the highest performance benefits for a freeway segment. The proposed methodology is tested in the I-210 E (in California, U.S.) simulation freeway segment built and calibrated in Simulation of Urban Mobility software as a case study. The weighted sum of the average total travel time on the mainline and the average queue length of on-ramps is formulated as the objective function to optimize the CV MPR. Different weight combinations are tested as different scenarios. The optimization results of these scenarios show that, when the weight of total travel time is high, the optimal CV MPR tends to be high. On the contrary, when the weight of queue length increases, higher CV MPRs may not guarantee higher benefits for the traffic system. The globally optimal CV MPR can be as low as 3%. The case study also confirms the effectiveness of optimizing the CV MPR based on microsimulation and Bayesian optimization.more » « less
-
null (Ed.)Connected and automated vehicles (CAVs) will undoubtedly transform many aspects of transportation systems in the future. In the meantime, transportation agencies must make investment and policy decisions to address the future needs of the transportation system. This research provides much-needed guidance for agencies about planning-level capacities in a CAV future and quantify Highway Capacity Manual (HCM) capacities as a function of CAV penetration rates and vehicle behaviors such as car-following, lane change, and merge. As a result of numerous uncertainties on CAV implementation policies, the study considers many scenarios including variations in parameters (including CAV gap/headway settings), roadway geometry, and traffic characteristics. More specifically, this study considers basic freeway, freeway merge, and freeway weaving segments in which various simulation scenarios are evaluated using two major CAV applications: cooperative adaptive cruise control and advanced merging. Data from microscopic traffic simulation are collected to develop capacity adjustment factors for CAVs. Results show that the existence of CAVs in the traffic stream can significantly enhance the roadway capacity (by as much as 35% to 40% under certain cases), not only on basic freeways but also on merge and weaving segments, as the CAV market penetration rate increases. The human driver behavior of baseline traffic also affects the capacity benefits, particularly at lower CAV market penetration rates. Finally, tables of capacity adjustment factors and corresponding regression models are developed for HCM implementation of the results of this study.more » « less
-
Advanced sensing technologies and communication capabilities of Connected and Autonomous Vehicles (CAVs) empower them to capture the dynamics of surrounding vehicles, including speeds and positions of those behind, enabling judicious responsive maneuvers. The acquired dynamics information of vehicles spurred the development of various cooperative platoon controls, particularly designed to enhance platoon stability with reduced spacing for reliable roadway capacity increase. These controls leverage abundant information transmitted through various communication topologies. Despite these advancements, the impact of different vehicle dynamics information on platoon safety remains underexplored, as current research predominantly focuses on stability analysis. This knowledge gap highlights the critical need for further investigation into how diverse vehicle dynamics information influences platoon safety. To address this gap, this research introduces a novel framework based on the concept of phase shift, aiming to scrutinize the tradeoffs between the safety and stability of CAV platoons formed upon bidirectional information flow topology. Our investigation focuses on platoon controls built upon bidirectional information flow topologies using diverse dynamics information of vehicles. Our research findings emphasize that the integration of various types of information into CAV platoon controls does not universally yield benefits. Specifically, incorporating spacing information can enhance both platoon safety and string stability. In contrast, velocity difference information can improve either safety or string stability, but not both simultaneously. These findings offer valuable insights into the formulation of CAV platoon control principles built upon diverse communication topologies. This research contributes a nuanced understanding of the intricate interplay between safety and stability in CAV platoons, emphasizing the importance of information dynamics in shaping effective control strategies.more » « less
An official website of the United States government

