We investigate the effects of micellar entanglement number on the kinetics of shear banding flow formation in a Taylor–Couette flow. Three sets of wormlike micellar solutions, each set with a similar fluid elasticity and zero-shear-rate viscosity, but with varying entanglement densities, are studied under the startup of steady shear. Our experiments indicate that in the set with low fluid elasticity, the transient shear banding flow is characterized by the formation of a transient flow reversal in a range of entanglement densities. Outside of this range, the transient flow reversal is not observed. For the sets of medium and high elasticities, the transient flow reversals exist for relatively small entanglement densities and disappear for large entanglement densities. Our analysis shows that wall slip and elastic instabilities do not affect the transient flow feature. We identify a correlation between micellar entanglement number, the width of the stress plateau, and the extent of the transient flow reversal. As the micellar entanglement number increases, the width of the stress plateau first increases; then, at a higher micellar entanglement number, the plateau width decreases. Therefore, we hypothesize that the transient flow reversal is connected to the micellar entanglement number through the width of the stress plateau.
more »
« less
Isomorphs in sheared binary Lennard-Jones glass: Transient response
We have studied shear deformation of binary Lennard-Jones glasses to investigate the extent to which the transient part of the stress strain curves is invariant when the thermodynamic state point is varied along an isomorph. Shear deformations were carried out on glass samples of varying stability, determined by cooling rate, and at varying strain rates, at state points deep in the glass. Density changes up to and exceeding a factor of two were made. We investigated several different methods for generating isomorphs but none of the previously developed methods could generate sufficiently precise isomorphs given the large density changes and nonequilibrium situation. Instead, the temperatures for these higher densities were chosen to give state points isomorphic to the starting state point by requiring the steady-state flow stress for isomorphic state points to be invariant in reduced units. In contrast to the steady-state flow stress, we find that the peak stress on the stress strain curve is not invariant. The peak stress decreases by a few percent for each ten percent increase in density, although the differences decrease with increasing density. Analysis of strain profiles and nonaffine motion during the transient phase suggests that the root of the changes in peak stress is a varying tendency to form shear bands, with the largest tendency occurring at the lowest densities. We suggest that this reflects the effective steepness of the potential; a higher effective steepness gives a greater tendency to form shear bands.
more »
« less
- Award ID(s):
- 1804186
- PAR ID:
- 10511084
- Publisher / Repository:
- American Physical Society
- Date Published:
- Journal Name:
- Physical Review E
- Volume:
- 107
- Issue:
- 1
- ISSN:
- 2470-0045
- Page Range / eLocation ID:
- 014610
- Subject(s) / Keyword(s):
- Rheological properties Shear deformation Glasses Molecular dynamics
- Format(s):
- Medium: X
- Sponsoring Org:
- National Science Foundation
More Like this
-
-
We investigate the flow evolution of a linear and a branched wormlike micellar solution with matched rheology in a Taylor–Couette (TC) cell using a combination of particle-tracking velocimetry, birefringence, and turbidity measurements. Both solutions exhibit a stress plateau within a range of shear rates. Under startup of a steady shear rate flow within the stress plateau, both linear and branched samples exhibit strong transient shear thinning flow profiles. However, while the flow of the linear solution evolves to a banded structure at longer times, the flow of the branched solution transitions to a curved velocity profile with no evidence of shear banding. Flow-induced birefringence measurements indicate transient birefringence banding with strong micellar alignment in the high shear band for the linear solution. The transient flow-induced birefringence is stronger for the branched system at an otherwise identical Wi. At longer times, the birefringence bands are replaced by a chaotic flow reminiscent of elastic instabilities. Visualization of the flow-induced turbidity in the velocity gradient-vorticity plane reveals quasi-steady banding with a turbidity contrast between high and low shear bands in the linear solution. However, the turbidity evolves uniformly within the gap of the TC cell for the branched solution, corroborating the non-banded quasi-steady velocimetry results. Finally, we show that while elastic instabilities in the linear solution emerge in the high shear band, the flow of branched solution at high Wi becomes unstable due to end effects, with growing end regions that ultimately span the entire axial length of the TC cell.more » « less
-
none (Ed.)The mechanical behavior of crystal-rich mush controls the dynamics and evolution of magma bodies but is poorly understood, . The presence of a semi-rigid contact network in the crystal phase greatly affects the rheology of mush but the contributions of crystal shape to the force, contact and shape fabric remains poorly characterized. This in turn influences the transmission of stress in the mush, the packing stiffness, and the volume fraction at jamming. It is also unclear whether the total amount of deformation of a mush can be quantitatively determined from the shape preferred orientation of the crystals. We performed 3D numerical simulations using a coupled computational fluid dynamics and discrete element method to illuminate the dynamic states of non-spherical crystals in a viscous melt. Simulations consisted of the simple shear of a mush under a constant pressure upper boundary. Crystals are represented by elongated cuboids having an aspect ratio of four. Our results differ from those obtained with smooth spheres and shed light on the influence of the crystal shape and orientation fabric on the mechanical properties of a mush. We found two distinct behaviors associated with the transient and steady-state, however at all times strain is nonaffine. During the transient, the strain is accommodated by the emergence of multiple shear bands and tends to concentrate on a single one. The shear bands emerge because of steric blocking and space limitations preventing the rotation of elongated particles, generating the local and temporary jamming of the crystal network. On the contrary, in the residual and steady-state, the strain is accommodated by one main shear band. The analysis of the orientation of the crystals shows that the deformation of the mush tends to increase the foliation of the crystals more than their alignment.more » « less
-
We explore the rheology during a startup flow of well-characterized polyelectrolyte microgel suspensions, which form soft glasses above the jamming concentration. We present and discuss results measured using different mechanical histories focusing on the variations of the static yield stress and yield strain. The behavior of the shear stress growth function is affected by long-lived residual stresses and strains that imprint a slowly decaying mechanical memory inside the materials. The startup flow response is not reversible upon flow reversal and the amplitude of the static yield stress increases with the time elapsed after rejuvenation. We propose an experimental protocol that minimizes the directional memory and we analyze the effect of aging. The static yield strain γ p and the reduced static yield stress σ p / σ y , where σ y is the dynamic yield stress measured from steady flow measurements, are in good agreement with our previous simulations [Khabaz et al., “Transient dynamics of soft particle glasses in startup shear flow. Part I: Microstructure and time scales,” J. Rheol. 65, 241 (2021)]. Our results demonstrate the need to consider memory and aging effects in transient measurements on soft particle glasses.more » « less
-
Abstract The rheology of the upper mantle impacts a variety of geodynamic processes, including postseismic deformation following great earthquakes and post-glacial rebound. The deformation of upper mantle rocks is controlled by the rheology of olivine, the most abundant upper mantle mineral. The mechanical properties of olivine at steady state are well constrained. However, the physical mechanism underlying transient creep, an evolutionary, hardening phase converging to steady state asymptotically, is still poorly understood. Here, we constrain a constitutive framework that captures transient creep and steady state creep consistently using the mechanical data from laboratory experiments on natural dunites containing at least 94% olivine under both hydrous and anhydrous conditions. The constitutive framework represents a Burgers assembly with a thermally activated nonlinear stress-versus-strain-rate relationship for the dashpots. Work hardening is obtained by the evolution of a state variable that represents internal stress. We determine the flow law parameters for dunites using a Markov chain Monte Carlo method. We find the activation energy $$430\pm 20$$ 430 ± 20 and $$250\pm 10$$ 250 ± 10 kJ/mol for dry and wet conditions, respectively, and the stress exponent $$2.0\pm 0.1$$ 2.0 ± 0.1 for both the dry and wet cases for transient creep, consistently lower than those of steady-state creep, suggesting a separate physical mechanism. For wet dunites in the grain-boundary sliding regime, the grain-size dependence is similar for transient creep and steady-state creep. The lower activation energy of transient creep could be due to a higher jog density of the corresponding soft-slip system. More experimental data are required to estimate the activation volume and water content exponent of transient creep. The constitutive relation used and its associated flow law parameters provide useful constraints for geodynamics applications. Graphical Abstractmore » « less
An official website of the United States government

