skip to main content
US FlagAn official website of the United States government
dot gov icon
Official websites use .gov
A .gov website belongs to an official government organization in the United States.
https lock icon
Secure .gov websites use HTTPS
A lock ( lock ) or https:// means you've safely connected to the .gov website. Share sensitive information only on official, secure websites.


Title: Stereodivergent, Kinetically Controlled Isomerization of Terminal Alkenes via Nickel Catalysis
Abstract Because internal alkenes are more challenging synthetic targets than terminal alkenes, metal‐catalyzed olefin mono‐transposition (i.e., positional isomerization) approaches have emerged to afford valuableE‐ orZ‐internal alkenes from their complementary terminal alkene feedstocks. However, the applicability of these methods has been hampered by lack of generality, commercial availability of precatalysts, and scalability. Here, we report a nickel‐catalyzed platform for the stereodivergentE/Z‐selective synthesis of internal alkenes at room temperature. Commercial reagents enable this one‐carbon transposition of terminal alkenes to valuableE‐ orZ‐internal alkenes via a Ni−H‐mediated insertion/elimination mechanism. Though the mechanistic regime is the same in both systems, the underlying pathways that lead to each of the active catalysts are distinct, with theZ‐selective catalyst forming from comproportionation of an oxidative addition complex followed by oxidative addition with substrate and theE‐selective catalyst forming from protonation of the metal by the trialkylphosphonium salt additive. In each case, ligand sterics and denticity control stereochemistry and prevent over‐isomerization.  more » « less
Award ID(s):
2102550
PAR ID:
10512056
Author(s) / Creator(s):
; ; ; ; ; ;
Publisher / Repository:
Wiley
Date Published:
Journal Name:
Angewandte Chemie International Edition
Volume:
63
Issue:
21
ISSN:
1433-7851
Format(s):
Medium: X
Sponsoring Org:
National Science Foundation
More Like this
  1. The catalytic one-bond isomerization (transposition) of 1- alkenes is an emerging approach to Z-2-alkenes. Design of more selective catalysts would benefit from a mechanistic understanding of factors controlling Z selectivity. We propose here a reaction pathway for cis-Mo(CO)4(PCy3)(piperidine) (3), a precatalyst that shows high Z selectivity for transposition of alpha olefins (e.g., 1-octene to 2-octene, 18:1 Z:E at 74% conversion). Computational modeling of reaction pathways and isotopic labeling suggests the isomerization takes place via an allyl (1,3-hydride shift) pathway, where oxidative addition of fac- (CO)3Mo(PCy3)(η2-alkene) is followed by hydride migration from one position (cis to allyl C3 carbon) to another (cis to allyl C1 carbon) via hydride/CO exchanges. Calculated barriers for the hydride migration pathway are lower than explored alternative mechanisms (e.g., change of allyl hapticity, allyl rotation). To our knowledge, this is the first study to propose such a hydride migration in alkene isomerization. 
    more » « less
  2. Abstract We report herein a Cu‐catalyzed regio‐, diastereo‐ and enantioselective acylboration of 1,3‐butadienylboronate with acyl fluorides. Under the developed conditions, the reactions provide (Z)‐β,γ‐unsaturated ketones bearing an α‐tertiary stereocenter with highZ‐selectivity and excellent enantioselectivities. While direct access to highly enantioenrichedE‐isomers was not successful, we showed that such molecules can be synthesized with excellentE‐selectivity and optical purities via Pd‐catalyzed alkene isomerization from the correspondingZ‐isomers. The orthogonal chemical reactivities of the functional groups embedded in the ketone products allow for diverse chemoselective transformations, which provides a valuable platform for further derivatization. 
    more » « less
  3. A stereodivergent, W-catalyzed alkene isomerization is reported, leading to eitherE- orZ-β,γ-unsaturated carbonyl compounds based on the ligand environment around the metal. 
    more » « less
  4. Abstract A transition metal‐free Se‐catalyzed C−H amination protocol for α’‐amination of enol derivatives has been developed. This reaction can be used to functionalize a wide variety of oxygen‐ and halogen‐substituted alkenes spanning a vast range of nucleophilicities, giving α’‐aminated enol derivatives with high regioselectivity. Amination ofE/Zmixtures of alkenes proceeds stereoconvergently to give the (Z)‐enol derivatives exclusively. Mechanistic studies revealed that the relative reactivity and α’‐regioselectivity of these transformations is determined by substantial resonance donation to the heteroatom‐bound carbon in the transition state. These products participate in traditional reactions of enol derivatives, allowing for efficient functionalization of both α‐ and α’‐positions from a single enol derivative with high diastereocontrol. 
    more » « less
  5. Abstract A three‐component coupling approach toward structurally complex dialkylsulfides is described via the nickel‐catalyzed 1,2‐carbosulfenylation of unactivated alkenes with organoboron nucleophiles and alkylsulfenamide (N−S) electrophiles. Efficient catalytic turnover is facilitated using a tailored N−S electrophile containing anN‐methyl methanesulfonamide leaving group, allowing catalyst loadings as low as 1 mol %. Regioselectivity is controlled by a collection of monodentate, weakly coordinating native directing groups, including sulfonamides, amides, sulfinamides, phosphoramides, and carbamates. Key to the development of this transformation is the identification of quinones as a family of hemilabile and redox‐active ligands that tune the steric and electronic properties of the metal throughout the catalytic cycle. Density functional theory (DFT) results show that the duroquinone (DQ) ligand adopts different coordination modes in different stages of the Ni‐catalyzed 1,2‐carbosulfenylation‐binding as an η6capping ligand to stabilize the precatalyst/resting state and prevent catalyst decomposition, binding as an X‐type redox‐active durosemiquinone radical anion to promote alkene migratory insertion with a less distorted square planar Ni(II) center, and binding as an L‐type ligand to promote N−S oxidative addition at a relatively more electron‐rich Ni(I) center. 
    more » « less