Proper calibration of human reliance on AI is fundamental to achieving complementary performance in AI-assisted human decision-making. Most previous works focused on assessing user reliance, and more broadly trust, retrospectively, through user perceptions and task-based measures. In this work, we explore the relationship between eye gaze and reliance under varying task difficulties and AI performance levels in a spatial reasoning task. Our results show a strong positive correlation between percent gaze duration on the AI suggestion and user AI task agreement, as well as user perceived reliance. Moreover, user agency is preserved particularly when the task is easy and when AI performance is low or inconsistent. Our results also reveal nuanced differences between reliance and trust. We discuss the potential of using eye gaze to gauge human reliance on AI in real-time, enabling adaptive AI assistance for optimal human-AI team performance. 
                        more » 
                        « less   
                    
                            
                            Guided By AI: Navigating Trust, Bias, and Data Exploration in AI‐Guided Visual Analytics
                        
                    
    
            Abstract The increasing integration of artificial intelligence (AI) in visual analytics (VA) tools raises vital questions about the behavior of users, their trust, and the potential of induced biases when provided with guidance during data exploration. We present an experiment where participants engaged in a visual data exploration task while receiving intelligent suggestions supplemented with four different transparency levels. We also modulated the difficulty of the task (easy or hard) to simulate a more tedious scenario for the analyst. Our results indicate that participants were more inclined to accept suggestions when completing a more difficult task despite theai's lower suggestion accuracy. Moreover, the levels of transparency tested in this study did not significantly affect suggestion usage or subjective trust ratings of the participants. Additionally, we observed that participants who utilized suggestions throughout the task explored a greater quantity and diversity of data points. We discuss these findings and the implications of this research for improving the design and effectiveness ofai‐guidedvatools. 
        more » 
        « less   
        
    
                            - Award ID(s):
- 2118201
- PAR ID:
- 10513562
- Publisher / Repository:
- Wiley-Blackwell
- Date Published:
- Journal Name:
- Computer Graphics Forum
- ISSN:
- 0167-7055
- Format(s):
- Medium: X
- Sponsoring Org:
- National Science Foundation
More Like this
- 
            
- 
            The rise of complex AI systems in healthcare and other sectors has led to a growing area of research called Explainable AI (XAI) designed to increase transparency. In this area, quantitative and qualitative studies focus on improving user trust and task performance by providing system- and prediction-level XAI features. We analyze stakeholder engagement events (interviews and workshops) on the use of AI for kidney transplantation. From this we identify themes which we use to frame a scoping literature review on current XAI features. The stakeholder engagement process lasted over nine months covering three stakeholder group's workflows, determining where AI could intervene and assessing a mock XAI decision support system. Based on the stakeholder engagement, we identify four major themes relevant to designing XAI systems – 1) use of AI predictions, 2) information included in AI predictions, 3) personalization of AI predictions for individual differences, and 4) customizing AI predictions for specific cases. Using these themes, our scoping literature review finds that providing AI predictions before, during, or after decision-making could be beneficial depending on the complexity of the stakeholder's task. Additionally, expert stakeholders like surgeons prefer minimal to no XAI features, AI prediction, and uncertainty estimates for easy use cases. However, almost all stakeholders prefer to have optional XAI features to review when needed, especially in hard-to-predict cases. The literature also suggests that providing both system and prediction-level information is necessary to build the user's mental model of the system appropriately. Although XAI features improve users' trust in the system, human-AI team performance is not always enhanced. Overall, stakeholders prefer to have agency over the XAI interface to control the level of information based on their needs and task complexity. We conclude with suggestions for future research, especially on customizing XAI features based on preferences and tasks.more » « less
- 
            Artificial intelligence (AI), including large language models and generative AI, is emerging as a significant force in software development, offering developers powerful tools that span the entire development lifecycle. Although software engineering research has extensively studied AI tools in software development, the specific types of interactions between developers and these AI-powered tools have only recently begun to receive attention. Understanding and improving these interactions has the potential to enhance productivity, trust, and efficiency in AI-driven workflows. In this paper, we propose a taxonomy of interaction types between developers and AI tools, identifying eleven distinct interaction types, such as auto-complete code suggestions, command-driven actions, and conversational assistance. Building on this taxonomy, we outline a research agenda focused on optimizing AI interactions, improving developer control, and addressing trust and usability challenges in AI-assisted development. By establishing a structured foundation for studying developer-AI interactions, this paper aims to stimulate research on creating more effective, adaptive AI tools for software development.more » « less
- 
            Keathley, H.; Enos, J.; Parrish, M. (Ed.)The role of human-machine teams in society is increasing, as big data and computing power explode. One popular approach to AI is deep learning, which is useful for classification, feature identification, and predictive modeling. However, deep learning models often suffer from inadequate transparency and poor explainability. One aspect of human systems integration is the design of interfaces that support human decision-making. AI models have multiple types of uncertainty embedded, which may be difficult for users to understand. Humans that use these tools need to understand how much they should trust the AI. This study evaluates one simple approach for communicating uncertainty, a visual confidence bar ranging from 0-100%. We perform a human-subject online experiment using an existing image recognition deep learning model to test the effect of (1) providing single vs. multiple recommendations from the AI and (2) including uncertainty information. For each image, participants described the subject in an open textbox and rated their confidence in their answers. Performance was evaluated at four levels of accuracy ranging from the same as the image label to the correct category of the image. The results suggest that AI recommendations increase accuracy, even if the human and AI have different definitions of accuracy. In addition, providing multiple ranked recommendations, with or without the confidence bar, increases operator confidence and reduces perceived task difficulty. More research is needed to determine how people approach uncertain information from an AI system and develop effective visualizations for communicating uncertainty.more » « less
- 
            AI technologies such as Large Language Models (LLMs) are increasingly used to make suggestions to autocomplete text as people write. Can these suggestions impact people’s writing and attitudes? In two large-scale preregistered experiments (N=2,582), we expose participants who are writing about important societal issues to biased AI-generated suggestions. The attitudes participants expressed in their writing and in a post-task survey converged towards the AI’s position. Yet, a majority of participants were unaware of the AI suggestions’ bias and their influence. Further, awareness of the task or of the AI’s bias, e.g. warning participants about potential bias before or after exposure to the treatment, did not mitigate the influence effect. Moreover, the AI’s influence is not fully explained by the additional information provided by the suggestions.more » « less
 An official website of the United States government
An official website of the United States government 
				
			 
					 
					
