We detail the follow-up and characterization of a transiting exo-Venus identified by TESS, GJ 3929b (TOI-2013b), and its nontransiting companion planet, GJ 3929c (TOI-2013c). GJ 3929b is an Earth-sized exoplanet in its star’s Venus zone (
One of the main scientific goals of the TESS mission is the discovery of transiting small planets around the closest and brightest stars in the sky. Here, using data from the CARMENES, MAROON-X, and HIRES spectrographs together with TESS, we report the discovery and mass determination of aplanetary system around the M1.5 V star GJ 806 (TOI-4481). GJ 806 is a bright (
- Award ID(s):
- 2108465
- PAR ID:
- 10514027
- Author(s) / Creator(s):
- ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; more »
- Publisher / Repository:
- A&A
- Date Published:
- Journal Name:
- Astronomy & Astrophysics
- Volume:
- 678
- ISSN:
- 0004-6361
- Page Range / eLocation ID:
- A80
- Format(s):
- Medium: X
- Sponsoring Org:
- National Science Foundation
More Like this
-
Abstract P b = 2.616272 ± 0.000005 days; Sb =S ⊕) orbiting a nearby M dwarf. GJ 3929c is most likely a nontransiting sub-Neptune. Using the new, ultraprecise NEID spectrometer on the WIYN 3.5 m Telescope at Kitt Peak National Observatory, we are able to modify the mass constraints of planet b reported in previous works and consequently improve the significance of the mass measurement to almost 4σ confidence (M b = 1.75 ± 0.45M ⊕). We further adjust the orbital period of planet c from its alias at 14.30 ± 0.03 days to the likely true period of 15.04 ± 0.03 days, and we adjust its minimum mass to = 5.71 ± 0.92M ⊕. Using the diffuser-assisted ARCTIC imager on the ARC 3.5 m telescope at Apache Point Observatory, in addition to publicly available TESS and LCOGT photometry, we are able to constrain the radius of planet b toR p = 1.09 ± 0.04R ⊕. GJ 3929b is a top candidate for transmission spectroscopy in its size regime (TSM = 14 ± 4), and future atmospheric studies of GJ 3929b stand to shed light on the nature of small planets orbiting M dwarfs. -
The two known planets in the planetary system of Teegarden’s Star are among the most Earth-like exoplanets currently known. Revisiting this nearby planetary system with two planets in the habitable zone aims at a more complete census of planets around very low-mass stars. A significant number of new radial velocity measurements from CARMENES, ESPRESSO, MAROON-X, and HPF, as well as photometry from TESS motivated a deeper search for additional planets. We confirm and refine the orbital parameters of the two know planets Teegarden’s Star b and c. We also report the detection of a third planet d with an orbital period of 26.13 ± 0.04 days and a minimum mass of 0.82 ± 0.17
M ⊕. A signal at 96 days is attributed to the stellar rotation period. The interpretation of a signal at 172 days remains open. The TESS data exclude transiting short-period planets down to about half an Earth radius. We compare the planetary system architecture of very low-mass stars. In the currently known configuration, the planetary system of Teegarden’s star is dynamically quite different from that of TRAPPIST-1, which is more compact, but dynamically similar to others such as GJ 1002. -
Abstract Orbiting an M dwarf 12 pc away, the transiting exoplanet GJ 1132b is a prime target for transmission spectroscopy. With a mass of 1.7
M ⊕and radius of 1.1R ⊕, GJ 1132b’s bulk density indicates that this planet is rocky. Yet with an equilibrium temperature of 580 K, GJ 1132b may still retain some semblance of an atmosphere. Understanding whether this atmosphere exists and its composition will be vital for understanding how the atmospheres of terrestrial planets orbiting M dwarfs evolve. We observe five transits of GJ 1132b with the Wide Field Camera 3 (WFC3) on the Hubble Space Telescope (HST). We find a featureless transmission spectrum from 1.1 to 1.7μ m, ruling out cloud-free atmospheres with metallicities <300× solar with >4.8σ confidence. We combine our WFC3 results with transit depths from TESS and archival broadband and spectroscopic observations to find a featureless spectrum across 0.7 to 4.5μ m. GJ 1132b therefore has a high mean molecular weight atmosphere, possesses a high-altitude aerosol layer, or has effectively no atmosphere. Higher-precision observations are required in order to differentiate between these possibilities. We explore the impact of hot and cold starspots on the observed transmission spectrum GJ 1132b, quantifying the amplitude of spot-induced transit depth features. Using a simple Poisson model, we estimate spot temperature contrasts, spot covering fractions, and spot sizes for GJ 1132. These limits, as well as the modeling framework, may be useful for future observations of GJ 1132b or other planets transiting similarly inactive M dwarfs. -
Despite the thousands of planets in orbit around stars known to date, the mechanisms of planetary formation, migration, and atmospheric loss remain unresolved. In this work, we confirm the planetary nature of a young Saturn-size planet transiting a solar-type star every 8.03 d, TOI-1135 b. The age of the parent star is estimated to be in the interval of 125-1000 Myr based on various activity and age indicators, including its stellar rotation period of 5.13 ± 0.27 days and the intensity of photospheric lithium. We obtained follow-up photometry and spectroscopy, including precise radial velocity measurements using the CARMENES spectrograph, which together with the TESS data allowed us to fully characterise the parent star and its planet. As expected for its youth, the star is rather active and shows strong photometric and spectroscopic variability correlating with its rotation period. We modelled the stellar variability using Gaussian process regression. We measured the planetary radius at 9.02 ± 0.23
R ⊕(0.81 ± 0.02R Jup) and determined a 3σ upper limit of < 51.4M ⊕(< 0.16M Jup) on the planetary mass by adopting a circular orbit. Our results indicate that TOI-1135 b is an inflated planet less massive than Saturn or Jupiter but with a similar radius, which could be in the process of losing its atmosphere by photoevaporation. This new young planet occupies a region of the mass-radius diagram where older planets are scarse, and it could be very helpful to understanding the lower frequency of planets with sizes between Neptune and Saturn. -
We present the discovery of an Earth-mass planet (
M bsini = 1.26 ± 0.21M ⊕) on a 15.6 d orbit of a relatively nearby (d ~ 9.6 pc) and low-mass (0.167 ± 0.011M ⊙) M5.0 V star, Wolf 1069. Sitting at a separation of 0.0672 ± 0.0014 au away from the host star puts Wolf 1069 b in the habitable zone (HZ), receiving an incident flux ofS = 0.652 ± 0.029S ⊕. The planetary signal was detected using telluric-corrected radial-velocity (RV) data from the CARMENES spectrograph, amounting to a total of 262 spectroscopic observations covering almost four years. There are additional long-period signals in the RVs, one of which we attribute to the stellar rotation period. This is possible thanks to our photometric analysis including new, well-sampled monitoring campaigns undergone with the OSN and TJO facilities that supplement archival photometry (i.e., from MEarth and SuperWASP), and this yielded an updated rotational period range ofP rot = 150–170 d, with a likely value at 169.3−3.6+3.7. The stellar activity indicators provided by the CARMENES spectra likewise demonstrate evidence for the slow rotation period, though not as accurately due to possible factors such as signal aliasing or spot evolution. Our detectability limits indicate that additional planets more massive than one Earth mass with orbital periods of less than 10 days can be ruled out, suggesting that perhaps Wolf 1069 b had a violent formation history. This planet is also the sixth closest Earth-mass planet situated in the conservative HZ, after Proxima Centauri b, GJ 1061 d, Teegarden’s Star c, and GJ 1002 b and c. Despite not transiting, Wolf 1069 b is nonetheless a very promising target for future three-dimensional climate models to investigate various habitability cases as well as for sub-m s−1RV campaigns to search for potential inner sub-Earth-mass planets in order to test planet formation theories.