skip to main content
US FlagAn official website of the United States government
dot gov icon
Official websites use .gov
A .gov website belongs to an official government organization in the United States.
https lock icon
Secure .gov websites use HTTPS
A lock ( lock ) or https:// means you've safely connected to the .gov website. Share sensitive information only on official, secure websites.


Title: ADVANCED PAPER-BASED ORGANIC ELECTROCHEMICAL TRANSISTORS: A NOVEL APPROACH FOR RAPID POINT-OF-CARE ANTIBIOTIC SUSCEPTIBILITY TESTING
This study introduces a groundbreaking point-of-care (POC) system designed for antibiotic susceptibility testing (AST). At the heart of this innovation is the organic electrochemical transistor, a device that significantly amplifies the electrical signals arising from the redox activities and extracellular electron transfers of pathogens when exposed to antibiotics. This process involves electroactive reactions that either dope or de-dope the transistor's channel, leading to substantial changes in the current flow between the source and drain terminals. Furthermore, our system features an innovative integration with a paper substrate. This design decision significantly simplifies the handling of liquid bacterial cultures, making the process more straightforward and efficient. We have rigorously tested our sensing system using three well-known pathogens: Pseudomonas aeruginosa, Staphylococcus aureus, and Escherichia coli, exposing them to leading antibiotics to validate the system's effectiveness.  more » « less
Award ID(s):
2100757 2246975
PAR ID:
10514253
Author(s) / Creator(s):
; ;
Publisher / Repository:
Transducer Research Foundation
Date Published:
Journal Name:
Technical digest SolidState Sensor Actuator and Microsystems Workshop
ISSN:
1539-204X
Page Range / eLocation ID:
120-123
Format(s):
Medium: X
Sponsoring Org:
National Science Foundation
More Like this
  1. Bollenbach, Tobias (Ed.)
    Bacterial pathogens pose a major risk to human health, leading to tens of millions of deaths annually and significant global economic losses. While bacterial infections are typically treated with antibiotic regimens, there has been a rapid emergence of antimicrobial resistant (AMR) bacterial strains due to antibiotic overuse. Because of this, treatment of infections with traditional antimicrobials has become increasingly difficult, necessitating the development of innovative approaches for deeply understanding pathogen function. To combat issues presented by broad- spectrum antibiotics, the idea of narrow-spectrum antibiotics has been previously proposed and explored. Rather than interrupting universal bacterial cellular processes, narrow-spectrum antibiotics work by targeting specific functions or essential genes in certain species or subgroups of bacteria. Here, we generate a collection of genome-scale metabolic network reconstructions (GENREs) of pathogens through an automated computational pipeline. We used these GENREs to identify subgroups of pathogens that share unique metabolic phenotypes and determined that pathogen physiological niche plays a role in the development of unique metabolic function. For example, we identified several unique metabolic phenotypes specific to stomach pathogens. We identified essential genes unique to stomach pathogens in silico and a corresponding inhibitory compound for a uniquely essential gene. We then validated our in silico predictions with an in vitro microbial growth assay. We demonstrated that the inhibition of a uniquely essential gene,thyX, inhibited growth of stomach-specific pathogens exclusively, indicating possible physiological location-specific targeting. This pioneering computational approach could lead to the identification of unique metabolic signatures to inform future targeted, physiological location-specific, antimicrobial therapies, reducing the need for broad-spectrum antibiotics. 
    more » « less
  2. Abstract The failure to treat everyday bacterial infections is a current threat as pathogens are finding new ways to thwart antibiotics through mechanisms of resistance and intracellular refuge, thus rendering current antibiotic strategies ineffective. Cell‐penetrating peptides (CPPs) are providing a means to improve antibiotics that are already approved for use. Through coadministration and conjugation of antibiotics with CPPs, improved accumulation and selectivity with alternative and/or additional modes of action against infections have been observed. Herein, we review the recent progress of this antibiotic–cell‐penetrating peptide strategy in combatting sensitive and drug‐resistant pathogens. We take a closer look into the specific antibiotics that have been enhanced, and in some cases repurposed as broad‐spectrum drugs. Through the addition and conjugation of cell‐penetrating peptides to antibiotics, increased permeation across mammalian and/or bacterial membranes and a broader range in bacterial selectivity have been achieved. 
    more » « less
  3. Diseases have caused unprecedent mortality in Caribbean coral communities. White band disease (WBD) has killed up to 95% of all endangered Caribbean Acroporids since it was first observed in 1979. Despite the devastating impacts of WBD, its etiology is currently unknown although recent research identified two bacterial strains – ASVs classified as aCysteiniphilum litoraleand aVibriosp., as the most likely pathogens. To better understand the disease etiology of WBD, we pretreated corals with antibiotics to determine how prophylactic use of antibiotics impacts the transmission of WBD in a replicated tank-based experiment. We found the prophylactic use of antibiotics led to significantly reduced infection rates in disease exposed corals with a 30-percentage point decrease in the infection rate. Analyses of 16S rRNA amplicon gene sequencing data in the disease exposed corals demonstrated that antibiotic pretreatment resulted in coral microbiomes which were less speciose and contained relatively fewerVibriospp. than untreated corals, indicating that the benefit of the antibiotic pretreatment was its ability to reduce the relative abundance of intrinsic secondary opportunists and/or opportunistic pathogens suggesting their likely importance to the etiology of WBD. We propose two distinct etiologies involving either an extrinsic keystone pathogen (Cysteiniphilum litorale) or overgrowth of intrinsic opportunistic pathogens (Vibriospp.). Future research should isolate these strains to confirm the etiology of white band disease. 
    more » « less
  4. Andrej Sali, Bioengineering & (Ed.)
    Significance Antibiotic resistance in Gram-negative pathogens has been identified as an urgent threat to human health by the World Health Organization. The major challenge with treating infections by these pathogens is developing antibiotics that can traverse the dense bacterial outer membrane (OM) formed by a mesh of lipopolysaccharides. Effective antibiotics permeate through OM porins, which have evolved for nutrient diffusion; however, the conformational states of these porins regulating permeation are still unclear. Here, we used molecular dynamics simulations, free energy calculations, Markov-state modeling, and whole-cell accumulation assays to provide mechanistic insight on how a porin shifts between open and closed states. We provide a mechanism of how Gram-negative bacteria confer resistance to antibiotics. 
    more » « less
  5. Oliveira, Pedro H. (Ed.)
    ABSTRACT There is an urgent need for strategies to discover secondary drugs to prevent or disrupt antimicrobial resistance (AMR), which is causing >700,000 deaths annually. Here, we demonstrate that tetracycline-resistant (Tet R ) Escherichia coli undergoes global transcriptional and metabolic remodeling, including downregulation of tricarboxylic acid cycle and disruption of redox homeostasis, to support consumption of the proton motive force for tetracycline efflux. Using a pooled genome-wide library of single-gene deletion strains, at least 308 genes, including four transcriptional regulators identified by our network analysis, were confirmed as essential for restoring the fitness of Tet R E. coli during treatment with tetracycline. Targeted knockout of ArcA, identified by network analysis as a master regulator of this new compensatory physiological state, significantly compromised fitness of Tet R E. coli during tetracycline treatment. A drug, sertraline, which generated a similar metabolome profile as the arcA knockout strain, also resensitized Tet R E. coli to tetracycline. We discovered that the potentiating effect of sertraline was eliminated upon knocking out arcA , demonstrating that the mechanism of potential synergy was through action of sertraline on the tetracycline-induced ArcA network in the Tet R strain. Our findings demonstrate that therapies that target mechanistic drivers of compensatory physiological states could resensitize AMR pathogens to lost antibiotics. IMPORTANCE Antimicrobial resistance (AMR) is projected to be the cause of >10 million deaths annually by 2050. While efforts to find new potent antibiotics are effective, they are expensive and outpaced by the rate at which new resistant strains emerge. There is desperate need for a rational approach to accelerate the discovery of drugs and drug combinations that effectively clear AMR pathogens and even prevent the emergence of new resistant strains. Using tetracycline-resistant (Tet R ) Escherichia coli , we demonstrate that gaining resistance is accompanied by loss of fitness, which is restored by compensatory physiological changes. We demonstrate that transcriptional regulators of the compensatory physiologic state are promising drug targets because their disruption increases the susceptibility of Tet R E. coli to tetracycline. Thus, we describe a generalizable systems biology approach to identify new vulnerabilities within AMR strains to rationally accelerate the discovery of therapeutics that extend the life span of existing antibiotics. 
    more » « less