- Award ID(s):
- 1828010
- PAR ID:
- 10514451
- Publisher / Repository:
- Springer Netherlands
- Date Published:
- Journal Name:
- Nonlinear Dynamics
- Volume:
- 111
- Issue:
- 21
- ISSN:
- 0924-090X
- Page Range / eLocation ID:
- 19901 to 19910
- Format(s):
- Medium: X
- Sponsoring Org:
- National Science Foundation
More Like this
-
Microelectromechanical (MEMS) gyroscopes are small devices used in different industries such as automotive and robotics systems due to their small size and low costs. The MEMS gyroscopes constantly encounter external disturbances, which introduce some mechanical and electromechanical nonlinearity in those systems. In this paper, the Koopman theory is applied to the nonlinear dynamic model of MEMS gyroscope to the linear dynamics model. Dynamic mode decomposition (DMD) is used to obtain eigenfunctions using Koopman’s theory to linearize the system. Then, a linear quadratic regulator (LQR) controller is used to control the MEMS gyroscope. The simulation results verify the performance of the proposed controller in terms of high-tracking performance.more » « less
-
Abstract This research proposes a new compound fractional sliding mode control (FOSMC) and super-twisting control (FOSMC + STC) to control a microelectromechanical systems gyroscope. A new sliding mode surface has been defined to design the proposed new sliding mode controller. The main advantages of a FOSMC are its high tracking performance and robustness against external perturbation, but creating a chattering phenomenon is its main drawback. By applying a super-twisting control (STC) method with FOSMC, the chattering phenomenon is eliminated, the singularity problem is solved, and systems robustness has significantly improved. Simulation results validate the effectiveness of the proposed control approach.more » « less
-
Robotic manipulators with diverse structures find widespread use in both industrial and medical applications. Therefore, designing an appropriate controller is of utmost importance when utilizing such robots. In this research, we present a robust data-driven control method for the regulation of a 2-degree-of-freedom (2-DoF) robot manipulator. The nonlinear dynamic model of the 2-DoF robot arm is linearized using Koopman theory. The data mode decomposition (DMD) method is applied to generate the Koopman operator. A fractional sliding mode control (FOSMC) is employed to govern the data-driven linearized dynamic model. We compare the performance of Koopman fractional sliding mode control (KFOSMC) with conventional proportional integral derivative (PID) control and FOSMC prior to linearization by Koopman theory. The results demonstrate that KFOSMC outperforms PID and FOSMC in terms of high tracking performance, low tracking error, and minimal control signals.
-
Developing an accurate dynamic model for an Autonomous Underwater Vehicle (AUV) is challenging due to the diverse array of forces exerted on it in an underwater environment. These forces include hydrodynamic effects such as drag, buoyancy, and added mass. Consequently, achieving precision in predicting the AUV's behavior requires a comprehensive understanding of these dynamic forces and their interplay. In our research, we have devised a linear data-driven dynamic model rooted in Koopman's theory. The cornerstone of leveraging Koopman theory lies in accurately estimating the Koopman operator. To achieve this, we employ the dynamic mode decomposition (DMD) method, which enables the generation of the Koopman operator. We have developed a Fractional Sliding Mode Control (FSMC) method to provide robustness and high tracking performance for AUV systems. The efficacy of the proposed controller has been verified through simulation results.more » « less
-
The modeling of nonlinear dynamics based on Koopman operator theory, originally applicable only to autonomous systems with no control, is extended to nonautonomous control system without approximation of the input matrix. Prevailing methods using a least square estimate of the input matrix may result in an erroneous input matrix, misinforming the controller. Here, a new method for constructing a Koopman model that yields the exact input matrix is presented. A set of state variables are introduced so that the control inputs are linearly involved in the dynamics of actuators. With these variables, a lifted linear model with the exact input matrix, called a Control-Coherent Koopman Model, is constructed by superposing control input terms, which are linear in local actuator dynamics, to the Koopman operator of the associated autonomous nonlinear system. As an example, the proposed method is applied to multi degree-of-freedom robotic arms, which are controlled with Model Predictive Control (MPC). It is demonstrated that the prevailing Dynamic Mode Decomposition with Control (DMDc) using an approximate input matrix does not provide a satisfactory result, while the Control-Coherent Koopman Model performs well with the correct input matrix, even performing better than the bilinear formulation of the Koopman operator.more » « less