skip to main content
US FlagAn official website of the United States government
dot gov icon
Official websites use .gov
A .gov website belongs to an official government organization in the United States.
https lock icon
Secure .gov websites use HTTPS
A lock ( lock ) or https:// means you've safely connected to the .gov website. Share sensitive information only on official, secure websites.


Title: On pinned billiard balls and foldings
We consider systems of “pinned balls,” i.e., balls that have fixed positions and pseudo-velocities. Pseudo-velocities change according to the same rules as those for velocities of totally elastic collisions between moving balls. The times of collisions for different pairs of pinned balls are chosen in an exogenous way. We give an explicit upper bound for the maximum number of pseudo-collisions for a system of n pinned balls in a d-dimensional space, in terms of n, d and the locations of ball centers. As a first step, we study foldings, i.e., mappings that formalize the idea of folding a piece of paper along a crease.  more » « less
Award ID(s):
2003528
PAR ID:
10514599
Author(s) / Creator(s):
; ;
Publisher / Repository:
Indiana University Mathematics Journal
Date Published:
Journal Name:
Indiana University Mathematics Journal
Volume:
72
Issue:
3
ISSN:
0022-2518
Page Range / eLocation ID:
897 to 925
Format(s):
Medium: X
Sponsoring Org:
National Science Foundation
More Like this
  1. Mulzer, Wolfgang; Phillips, Jeff M (Ed.)
    Finding the diameter of a graph in general cannot be done in truly subquadratic assuming the Strong Exponential Time Hypothesis (SETH), even when the underlying graph is unweighted and sparse. When restricting to concrete classes of graphs and assuming SETH, planar graphs and minor-free graphs admit truly subquadratic algorithms, while geometric intersection graphs of unit balls, congruent equilateral triangles, and unit segments do not. Unit-disk graphs is one of the major open cases where the complexity of diameter computation remains unknown. More generally, it is conjectured that a truly subquadratic time algorithm exists for pseudo-disk graphs where each pair of objects has at most two intersections on the boundary. In this paper, we show a truly-subquadratic algorithm of running time O^~(n^{2-1/18}), for finding the diameter in a unit-disk graph, whose output differs from the optimal solution by at most 2. This is the first algorithm that provides an additive guarantee in distortion, independent of the size or the diameter of the graph. Our algorithm requires two important technical elements. First, we show that for the intersection graph of pseudo-disks, the graph VC-dimension - either of k-hop balls or the distance encoding vectors - is 4. This contrasts to the VC dimension of the pseudo-disks themselves as geometric ranges (which is known to be 3). Second, we introduce a clique-based r-clustering for geometric intersection graphs, which is an analog of the r-division construction for planar graphs. We also showcase the new techniques by establishing new results for distance oracles for unit-disk graphs with subquadratic storage and O(1) query time. The results naturally extend to unit L₁ or L_∞-disks and fat pseudo-disks of similar size. Last, if the pseudo-disks additionally have bounded ply, we have a truly subquadratic algorithm to find the exact diameter. 
    more » « less
  2. In this paper, we study the mixed Littlewood conjecture with pseudo-absolute values. For any pseudo-absolute-value sequence $${\mathcal{D}}$$ , we obtain a sharp criterion such that for almost every $$\unicode[STIX]{x1D6FC}$$ the inequality $$\begin{eqnarray}|n|_{{\mathcal{D}}}|n\unicode[STIX]{x1D6FC}-p|\leq \unicode[STIX]{x1D713}(n)\end{eqnarray}$$ has infinitely many coprime solutions $$(n,p)\in \mathbb{N}\times \mathbb{Z}$$ for a certain one-parameter family of $$\unicode[STIX]{x1D713}$$ . Also, under a minor condition on pseudo-absolute-value sequences $${\mathcal{D}}_{1},{\mathcal{D}}_{2},\ldots ,{\mathcal{D}}_{k}$$ , we obtain a sharp criterion on a general sequence $$\unicode[STIX]{x1D713}(n)$$ such that for almost every $$\unicode[STIX]{x1D6FC}$$ the inequality $$\begin{eqnarray}|n|_{{\mathcal{D}}_{1}}|n|_{{\mathcal{D}}_{2}}\cdots |n|_{{\mathcal{D}}_{k}}|n\unicode[STIX]{x1D6FC}-p|\leq \unicode[STIX]{x1D713}(n)\end{eqnarray}$$ has infinitely many coprime solutions $$(n,p)\in \mathbb{N}\times \mathbb{Z}$$ . 
    more » « less
  3. Consider a system of m polynomial equations {pi(x)=bi}i≤m of degree D≥2 in n-dimensional variable x∈ℝn such that each coefficient of every pi and bis are chosen at random and independently from some continuous distribution. We study the basic question of determining the smallest m -- the algorithmic threshold -- for which efficient algorithms can find refutations (i.e. certificates of unsatisfiability) for such systems. This setting generalizes problems such as refuting random SAT instances, low-rank matrix sensing and certifying pseudo-randomness of Goldreich's candidate generators and generalizations. We show that for every d∈ℕ, the (n+m)O(d)-time canonical sum-of-squares (SoS) relaxation refutes such a system with high probability whenever m≥O(n)⋅(nd)D−1. We prove a lower bound in the restricted low-degree polynomial model of computation which suggests that this trade-off between SoS degree and the number of equations is nearly tight for all d. We also confirm the predictions of this lower bound in a limited setting by showing a lower bound on the canonical degree-4 sum-of-squares relaxation for refuting random quadratic polynomials. Together, our results provide evidence for an algorithmic threshold for the problem at m≳O˜(n)⋅n(1−δ)(D−1) for 2nδ-time algorithms for all δ. 
    more » « less
  4. Aichholzer, Oswin; Wang, Haitao (Ed.)
    We present new results on 2- and 3-hop spanners for geometric intersection graphs. These include improved upper and lower bounds for 2- and 3-hop spanners for many geometric intersection graphs in ℝ^d. For example, we show that the intersection graph of n balls in ℝ^d admits a 2-hop spanner of size O^*(n^{3/2 - 1/(2(2⌊d/2⌋ + 1))}) and the intersection graph of n fat axis-parallel boxes in ℝ^d admits a 2-hop spanner of size O(n log^{d+1}n). Furthermore, we show that the intersection graph of general semi-algebraic objects in ℝ^d admits a 3-hop spanner of size O^*(n^{3/2 - 1/(2(2D-1))}), where D is a parameter associated with the description complexity of the objects. For such families (or more specifically, for tetrahedra in ℝ³), we provide a lower bound of Ω(n^{4/3}). For 3-hop and axis-parallel boxes in ℝ^d, we provide the upper bound O(n log ^{d-1}n) and lower bound Ω(n ({log n}/{log log n})^{d-2}). 
    more » « less
  5. Cabello, Sergio; Chen, Danny (Ed.)
    Let P be a set of n points in ℝ^d in general position. A median hyperplane (roughly) splits the point set P in half. The yolk of P is the ball of smallest radius intersecting all median hyperplanes of P. The egg of P is the ball of smallest radius intersecting all hyperplanes which contain exactly d points of P. We present exact algorithms for computing the yolk and the egg of a point set, both running in expected time O(n^(d-1) log n). The running time of the new algorithm is a polynomial time improvement over existing algorithms. We also present algorithms for several related problems, such as computing the Tukey and center balls of a point set, among others. 
    more » « less