skip to main content
US FlagAn official website of the United States government
dot gov icon
Official websites use .gov
A .gov website belongs to an official government organization in the United States.
https lock icon
Secure .gov websites use HTTPS
A lock ( lock ) or https:// means you've safely connected to the .gov website. Share sensitive information only on official, secure websites.


Title: Dynamic Behavior of Bistable Shallow Arches: From Intrawell to Chaotic Motion
Bistable shallow arches are ubiquitous in many engineering systems ranging from compliant mechanisms and biomedical stents to energy harvesters and passive fluidic controllers. In all these scenarios, the bistable states of the arch and the sudden transitions between them via snap-through instability are harnessed. However, bistable arches have been traditionally studied and characterized by triggering snap-through instability using quasi-static forces. Here, we analytically examine the effect of oscillatory loads on bistable arches and investigate the dynamic behaviors ranging from intrawell motion to periodic and chaotic interwell motion. The linear and nonlinear dynamic responses of both elastically and plastically deformed shallow arches are presented. Introducing an energy potential criterion, we classify the structure’s behavior within the parameter space. This energy-based approach allows us to explore the parameter space for high-dimensional models of the arch by varying the force amplitude and excitation frequency. Bifurcation diagrams, Lyapunov exponents, and maximum critical energy plots are presented to characterize the dynamic response of the system. Our results reveal that unstable solutions admitted through higher modes govern the critical energy required for interwell motion. This study investigates the rich nonlinear dynamic behavior of the arch element and it introduces an energy potential criterion that can scale easily to classify motion of arrays of bistable arches for future developments of multistable mechanical metamaterials.  more » « less
Award ID(s):
2239841
PAR ID:
10516996
Author(s) / Creator(s):
;
Publisher / Repository:
The American Society of Mechanical Engineers (ASME)
Date Published:
Journal Name:
Journal of Applied Mechanics
Volume:
91
Issue:
2
ISSN:
0021-8936
Format(s):
Medium: X
Sponsoring Org:
National Science Foundation
More Like this
  1. Fluid–structure interactions (FSIs) can be successfully leveraged to develop passive fluid control systems and active structures that respond to targeted flow conditions. When bistable structures interact with flowing fluids, interesting dynamics, such as large reconfigurations due to snap-through instability, can arise. Here, we demonstrate how to control the flowrate of a viscous fluid in a channel by tuning the boundary conditions of a bistable arch (i.e., postbuckled beam) incorporated along the channel sidewall. We introduce a torsionally supported postbuckled beam immersed in fluid flow to investigate flow–deformation relationships, surface pressure distributions, and critical flowrates. Varying torsional spring stiffness allows to span from clamped-clamped to hinged-hinged, and all intermediate stiffness rotational boundary conditions. We develop an analytical model and numerical continuation methods to determine the critical flowrate required to snap the bistable arch and the effects of the support’s torsional stiffness. Thanks to this approach, we demonstrate a wide range of attainable critical flowrates that can be tuned by varying the boundary conditions of the bistable arch. 
    more » « less
  2. null (Ed.)
    Abstract Nonreciprocity can be passively achieved by harnessing material nonlinearities. In particular, networks of nonlinear bistable elements with asymmetric energy landscapes have recently been shown to support unidirectional transition waves. However, in these systems energy can be transferred only when the elements switch from the higher to the lower energy well, allowing for a one-time signal transmission. Here, we show that in a mechanical metamaterial comprising a 1D array of bistable arches nonreciprocity and reversibility can be independently programmed and are not mutually exclusive. By connecting shallow arches with symmetric energy wells and decreasing energy barriers, we design a reversible mechanical diode that can sustain multiple signal transmissions. Further, by alternating arches with symmetric and asymmetric energy landscapes we realize a nonreciprocal chain that enables propagation of different transition waves in opposite directions. 
    more » « less
  3. Abstract This article studies the nonreciprocity of a system that consists of a bistable element coupled to a monostable element through a contactless magnetic interaction. To illustrate the concept, the bistable element is physically realized using a pendulum that interacts with a stationary magnet and the monostable element is a classical pendulum. A numerical model is implemented to simulate the nonlinear dynamics of the system. Both simulations and experiments show that the system exhibits a strong amplitude-dependent nonreciprocity in response to initial excitations. At small input amplitudes, the system has an intrawell response with minimal transmission of energy whether the excitation is exerted on the side of the bistable pendulum or on the other side. However, at high input amplitude, a strong nonreciprocal behavior is observed: excitation of the bistable pendulum causes an interwell response which considerably reduces the distance between the two pendulums and allows energy to be efficiently transmitted through the contactless magnetic interaction; excitation of the monostable pendulum does not cause any interwell response and results in limited energy transmission. The combination of bistability and contactless nonlinear interactions allows the system to exhibit very strong amplitude-dependent nonreciprocity, which may be useful in a wide range of applications. 
    more » « less
  4. Abstract Fossil footprints (i.e., tracks) were believed to document arch anatomical evolution, although our recent work has shown that track arches record foot kinematics instead. Analyses of track arches can thereby inform the evolution of human locomotion, although quantifying this 3‐D aspect of track morphology is difficult. Here, we present a volumetric method for measuring the arches of 3‐D models of human tracks and feet, using both Autodesk Maya and Blender software. The method involves generation of a 3‐D object that represents the space beneath the longitudinal arch, and measurement of that arch object's geometry and spatial orientation. We provide relevant tools and guidance for users to apply this technique to their own data. We present three case studies to demonstrate potential applications. These include, (1) measuring the arches of static and dynamic human feet, (2) comparing the arches of human tracks with the arches of the feet that made them, and (3) direct comparisons of human track and foot arch morphology throughout simulated track formation. The volumetric measurement tool proved robust for measuring 3‐D models of human tracks and feet, in static and dynamic contexts. This tool enables researchers to quantitatively compare arches of fossil hominin tracks, in order to derive biomechanical interpretations from them, and/or offers a different approach for quantifying foot morphology in living humans. 
    more » « less
  5. Vibration-based energy harvesting via microelectromechanical system- (MEMS-) scale devices presents numerous challenges due to difficulties in maximizing power output at low driving frequencies. This work investigates the performance of a uniquely designed microscale bistable vibration energy harvester featuring a central buckled beam coated with a piezoelectric layer. In this design, the central beam is pinned at its midpoint by using a torsional rod, which in turn is connected to two cantilever arms designed to induce bistable motion of the central buckled beam. The ability to induce switching between stable states is a critical strategy for boosting power output of MEMS. This study presents the formulation of a model to analyze the static and dynamic behaviors of the coupled structure, with a focus on the evolution of elongation strain within the piezoelectric layer. Cases of various initial buckling stress levels, driving frequencies, and driving amplitude were considered to identify regimes of viable energy harvesting. Results showed that bistable-state switching, or snap-through motion of the buckled beam, produced a significant increase in power production potential over a range of driving frequencies. These results indicate that optimal vibration scavenging requires an approach that balances the initial buckling stress level with the expected range of driving frequencies for a particular environment. 
    more » « less