skip to main content


Title: Evaluating the dissociation between drivers’ self-perceived and objective need for vehicle assistance during obstacle avoidance tasks

Driver-assistance systems are becoming more commonplace; however, the realized safety benefits of these technologies depend on whether a person accepts and adopts automated driving aids. One challenge to adoption could be a preference-performance dissociation (PPD), which is a mismatch between a self-perceived desire and an objective need for assistance. Research has reported PPD in driving but has not extensively leveraged driving performance data to confirm its existence. Thus, the goal of this study was to compare drivers’ self-reported need for vehicle assistance to their objective driving performance. Twenty-one participants drove on a simulated road and traversed challenging, real-world roadway obstacles. Afterwards, they were asked about their preference for automated vehicle assistance (e.g., steering and braking) during their drive. Overall, some participants exhibited PPD that included both over- and underestimating their need for a particular type of automated assistance. Findings can be used to develop shared control and adaptive automation strategies tailored to particular users and contexts across various safety-critical environments.

 
more » « less
Award ID(s):
1836952
PAR ID:
10517515
Author(s) / Creator(s):
;
Publisher / Repository:
SAGE Publications
Date Published:
Journal Name:
Proceedings of the Human Factors and Ergonomics Society Annual Meeting
Volume:
67
Issue:
1
ISSN:
1071-1813
Page Range / eLocation ID:
895 to 901
Format(s):
Medium: X
Sponsoring Org:
National Science Foundation
More Like this
  1. Objective

    Our objectives were to assess the efficacy of active inference models for capturing driver takeovers from automated vehicles and to evaluate the links between model parameters and self-reported cognitive fatigue, trust, and situation awareness.

    Background

    Control transitions between human drivers and automation pose a substantial safety and performance risk. Models of driver behavior that predict these transitions from data are a critical tool for designing safer, human-centered, systems but current models do not sufficiently account for human factors. Active inference theory is a promising approach to integrate human factors because of its grounding in cognition and translation to a quantitative modeling framework.

    Method

    We used data from a driving simulation to develop an active inference model of takeover performance. After validating the model’s predictions, we used Bayesian regression with a spike and slab prior to assess substantial correlations between model parameters and self-reported trust, situation awareness, fatigue, and demographic factors.

    Results

    The model accurately captured driving takeover times. The regression results showed that increases in cognitive fatigue were associated with increased uncertainty about the need to takeover, attributable to mapping observations to environmental states. Higher situation awareness was correlated with a more precise understanding of the environment and state transitions. Higher trust was associated with increased variance in environmental conditions associated with environmental states.

    Conclusion

    The results align with prior theory on trust and active inference and provide a critical connection between complex driver states and interpretable model parameters.

    Application

    The active inference framework can be used in the testing and validation of automated vehicle technology to calibrate design parameters to ensure safety.

     
    more » « less
  2. Vehicle cybersecurity is a serious concern, as modern vehicles are vulnerable to cyberattacks. How drivers respond to situations induced by vehicle cyberattacks is safety critical. This paper sought to understand the effect of human drivers’ risky driving style on response behavior to unexpected vehicle cyberattacks. A driving simulator study was conducted wherein 32 participants experienced a series of simulated drives in which unexpected events caused by vehicle cyberattacks were presented. Participants’ response behavior was assessed by their change in velocity after the cybersecurity events occurred, their post-event acceleration, as well as time to first reaction. Risky driving style was portrayed by scores on the Driver Behavior Questionnaire (DBQ) and the Brief Sensation Seeking Scale (BSSS). Half of the participants also received training regarding vehicle cybersecurity before the experiment. Results suggest that when encountering certain cyberattack-induced unexpected events, whether one received training, driving scenario, participants’ gender, DBQ-Violation scores, together with their sensation seeking measured by disinhibition, had a significant impact on their response behavior. Although both the DBQ and sensation seeking have been constantly reported to be linked with risky and aberrant driving behavior, we found that drivers with higher sensation seeking tended to respond to unexpected driving situations induced by vehicle cyberattacks in a less risky and potentially safer manner. This study incorporates not only human factors into the safety research of vehicle cybersecurity, but also builds direct connections between drivers’ risky driving style, which may come from their inherent risk-taking tendency, to response behavior to vehicle cyberattacks.

     
    more » « less
  3. Self-driving vehicles are the latest innovation in improving personal mobility and road safety by removing arguably error-prone humans from driving-related tasks. Such advances can prove especially beneficial for people who are blind or have low vision who cannot legally operate conventional motor vehicles. Missing from the related literature, we argue, are studies that describe strategies for vehicle design for these persons. We present a case study of the participatory design of a prototype for a self-driving vehicle human-machine interface (HMI) for a graduate-level course on inclusive design and accessible technology. We reflect on the process of working alongside a co-designer, a person with a visual disability, to identify user needs, define design ideas, and produce a low-fidelity prototype for the HMI. This paper may benefit researchers interested in using a similar approach for designing accessible autonomous vehicle technology. INTRODUCTION The rise of autonomous vehicles (AVs) may prove to be one of the most significant innovations in personal mobility of the past century. Advances in automated vehicle technology and advanced driver assistance systems (ADAS) specifically, may have a significant impact on road safety and a reduction in vehicle accidents (Brinkley et al., 2017; Dearen, 2018). According to the Department of Transportation (DoT), automated vehicles could help reduce road accidents caused by human error by as much as 94% (SAE International, n.d.). In addition to reducing traffic accidents and saving lives and property, autonomous vehicles may also prove to be of significant value to persons who cannot otherwise operate conventional motor vehicles. AVs may provide the necessary mobility, for instance, to help create new employment opportunities for nearly 40 million Americans with disabilities (Claypool et al., 2017; Guiding Eyes for the Blind, 2019), for instance. Advocates for the visually impaired specifically have expressed how “transformative” this technology can be for those who are blind or have significant low vision (Winter, 2015); persons who cannot otherwise legally operate a motor vehicle. While autonomous vehicles have the potential to break down transportation 
    more » « less
  4. Objective

    This study examined the impact of monitoring instructions when using an automated driving system (ADS) and road obstructions on post take-over performance in near-miss scenarios.

    Background

    Past research indicates partial ADS reduces the driver’s situation awareness and degrades post take-over performance. Connected vehicle technology may alert drivers to impending hazards in time to safely avoid near-miss events.

    Method

    Forty-eight licensed drivers using ADS were randomly assigned to either the active driving or passive driving condition. Participants navigated eight scenarios with or without a visual obstruction in a distributed driving simulator. The experimenter drove the other simulated vehicle to manually cause near-miss events. Participants’ mean longitudinal velocity, standard deviation of longitudinal velocity, and mean longitudinal acceleration were measured.

    Results

    Participants in passive ADS group showed greater, and more variable, deceleration rates than those in the active ADS group. Despite a reliable audiovisual warning, participants failed to slow down in the red-light running scenario when the conflict vehicle was occluded. Participant’s trust in the automated driving system did not vary between the beginning and end of the experiment.

    Conclusion

    Drivers interacting with ADS in a passive manner may continue to show increased and more variable deceleration rates in near-miss scenarios even with reliable connected vehicle technology. Future research may focus on interactive effects of automated and connected driving technologies on drivers’ ability to anticipate and safely navigate near-miss scenarios.

    Application

    Designers of automated and connected vehicle technologies may consider different timing and types of cues to inform the drivers of imminent hazard in high-risk scenarios for near-miss events.

     
    more » « less
  5. Objective

    This study explores subjective and objective driving style similarity to identify how similarity can be used to develop driver-compatible vehicle automation.

    Background

    Similarity in the ways that interaction partners perform tasks can be measured subjectively, through questionnaires, or objectively by characterizing each agent’s actions. Although subjective measures have advantages in prediction, objective measures are more useful when operationalizing interventions based on these measures. Showing how objective and subjective similarity are related is therefore prudent for aligning future machine performance with human preferences.

    Methods

    A driving simulator study was conducted with stop-and-go scenarios. Participants experienced conservative, moderate, and aggressive automated driving styles and rated the similarity between their own driving style and that of the automation. Objective similarity between the manual and automated driving speed profiles was calculated using three distance measures: dynamic time warping, Euclidean distance, and time alignment measure. Linear mixed effects models were used to examine how different components of the stopping profile and the three objective similarity measures predicted subjective similarity.

    Results

    Objective similarity using Euclidean distance best predicted subjective similarity. However, this was only observed for participants’ approach to the intersection and not their departure.

    Conclusion

    Developing driving styles that drivers perceive to be similar to their own is an important step toward driver-compatible automation. In determining what constitutes similarity, it is important to (a) use measures that reflect the driver’s perception of similarity, and (b) understand what elements of the driving style govern subjective similarity.

     
    more » « less