skip to main content
US FlagAn official website of the United States government
dot gov icon
Official websites use .gov
A .gov website belongs to an official government organization in the United States.
https lock icon
Secure .gov websites use HTTPS
A lock ( lock ) or https:// means you've safely connected to the .gov website. Share sensitive information only on official, secure websites.


This content will become publicly available on December 1, 2025

Title: Exploring toroidal anvil profiles for larger sample volumes above 4 Mbar
Abstract With the advent of toroidal and double-stage diamond anvil cells (DACs), pressures between 4 and 10 Mbar can be achieved under static compression, however, the ability to explore diverse sample assemblies is limited on these micron-scale anvils. Adapting the toroidal DAC to support larger sample volumes offers expanded capabilities in physics, chemistry, and planetary science: including, characterizing materials in soft pressure media to multi-megabar pressures, synthesizing novel phases, and probing planetary assemblages at the interior pressures and temperatures of super-Earths and sub-Neptunes. Here we have continued the exploration of larger toroidal DAC profiles by iteratively testing various torus and shoulder depths with central culet diameters in the 30–50 µm range. We present a 30 µm culet profile that reached a maximum pressure of 414(1) GPa based on a Pt scale. The 300 K equations of state fit to ourP–Vdata collected on gold and rhenium are compatible with extrapolated hydrostatic equations of state within 1% up to 4 Mbar. This work validates the performance of these large-culet toroidal anvils to > 4 Mbar and provides a promising foundation to develop toroidal DACs for diverse sample loading and laser heating.  more » « less
Award ID(s):
2022492
PAR ID:
10517913
Author(s) / Creator(s):
; ; ; ; ; ; ; ;
Publisher / Repository:
Nature
Date Published:
Journal Name:
Scientific Reports
Volume:
14
Issue:
1
ISSN:
2045-2322
Page Range / eLocation ID:
11412
Format(s):
Medium: X
Sponsoring Org:
National Science Foundation
More Like this
  1. Abstract The thermal conductivities of mantle and core materials have a major impact on planetary evolution, but their experimental determination requires precise knowledge of sample thickness at high pressure. Despite its importance, thickness in most diamond anvil cell (DAC) experiments is not measured but inferred from equations of state, assuming isotropic contraction upon compression or assuming isotropic expansion upon decompression. Here we provide evidence that in DAC experiments both assumptions are invalid for a range of mechanically diverse materials (KCl, NaCl, Ar, MgO, silica glass, Al2O3). Upon compression, these samples are ∼30–50% thinner than expected from isotropic contraction. Most surprisingly, all the studied samples continue to thin upon decompression to 10–20 GPa. Our results partially explain some discrepancies among the highly controversial thermal conductivity values of iron at Earth's core conditions. More generally, we suggest thatin situcharacterization of sample geometry is essential for conductivity measurements at high pressure. 
    more » « less
  2. Abstract Quantifying how grain size and/or deviatoric stress impact (Mg,Fe)2SiO4phase stability is critical for advancing our understanding of subduction processes and deep-focus earthquakes. Here, we demonstrate that well-resolved X-ray diffraction patterns can be obtained on nano-grained thin films within laser-heated diamond anvil cells (DACs) at hydrostatic pressures up to 24 GPa and temperatures up to 2300 K. Combined with well-established literature processes for tuning thin film grain size, biaxial stress, and substrate identity, these results suggest that DAC-loaded thin films can be useful for determining how grain size, deviatoric stress, and/or the coexistence of other phases influence high-pressure phase stability. As such, this novel DAC-loaded thin film approach may find use in a variety of earth science, planetary science, solid-state physics, and materials science applications. 
    more » « less
  3. Digital-to-Analog Converters (DACs) are inseparable fundamental components in radios that act as translator between digital signal processing and all types of transmitters including software-defined radios. Current Steering DACs (CS-DACs) are of interest because of their good linearity and high speed. In this article, a modification to the switching of a segmented CS-DAC is proposed through the use of a sub-DAC. The proposed techniques not only allow for reduced die area but also reduce power consumption while the static nonlinearity can be kept similar to the conventional segmented CS-DACs. The MATLAB model of the proposed DAC is tested for the performance of the 7 bit DAC under ideal and non-ideal cases and implemented in 22nm FDSOI technology with forward body biasing. The total power consumption of the proposed DAC is 2.4mW and it achieved FoM of 433. 
    more » « less
  4. Abstract Accurate knowledge of the phase transitions and thermoelastic properties of candidate iron alloys, such as Fe‐Si alloys, is essential for understanding the nature and dynamics of planetary cores. The phase diagrams of some Fe‐Si alloys between 1 atm and 16 GPa have been back‐extrapolated from higher pressures, but the resulting phase diagram of Fe83.6Si16.4(9 wt.% Si) is inconsistent with temperature‐induced changes in its electrical resistivity between 6 and 8 GPa. This study reports in situ synchrotron X‐ray diffraction (XRD) measurements on pre‐melted and powder Fe83.6Si16.4samples from ambient conditions to 60 GPa and 900 K using an externally heated diamond‐anvil cell. Upon compression at 300 K, thebccphase persisted up to ∼38 GPa. Thehcpphase appeared near 8 GPa in the pre‐melted sample, and near 17 GPa in the powder sample. The appearance of thehcpphase in the pre‐melted sample reconciles the reported changes in electrical resistivity of a similar sample, thus resolving the low‐pressure region of the phase diagram. The resulting high‐temperature Birch‐Murnaghan equation of state (EoS) and thermal EoS based on the Mie‐Gruneisen‐Debye model of thebccandhcpstructures are consistent with, and complement the literature data at higher pressures. The calculated densities based on the thermal EoS of Fe‐9wt.%Si indicate that bothbccandhcpphases agree with the reported core density estimates for the Moon and Mercury. 
    more » « less
  5. We performed Raman and infrared (IR) spectroscopy measurements of hydrogen at 295 K up to 280 GPa at an IR synchrotron facility of the Shanghai Synchrotron Radiation Facility (SSRF). To reach the highest pressure, hydrogen was loaded into toroidal diamond anvils with 30-μm central culet. The intermolecular coupling has been determined by concomitant measurements of the IR and Raman vibron modes. In phase IV, we find that the intermolecular coupling is much stronger in the graphenelike layer (G layer) of elongated molecules compared to the Br 2 -like layer (B layer) of shortened molecules and it increases with pressure much faster in the G layer compared to the B layer. These heterogeneous lattice dynamical properties are unique features of highly fluxional hydrogen phase IV. 
    more » « less