skip to main content
US FlagAn official website of the United States government
dot gov icon
Official websites use .gov
A .gov website belongs to an official government organization in the United States.
https lock icon
Secure .gov websites use HTTPS
A lock ( lock ) or https:// means you've safely connected to the .gov website. Share sensitive information only on official, secure websites.


Title: Dissipative Dark Matter on FIRE. II. Observational Signatures and Constraints from Local Dwarf Galaxies
Abstract We analyze the first cosmological baryonic zoom-in simulations of galaxies in dissipative self-interacting dark matter (dSIDM). The simulations utilize the FIRE-2 galaxy formation physics with the inclusion of dissipative dark matter self-interactions modeled as a constant fractional energy dissipation (fdiss= 0.75). In this paper, we examine the properties of dwarf galaxies withM*∼ 105–109Min both isolation and within Milky Way–mass hosts. For isolated dwarfs, we find more compact galaxy sizes and promotion of disk formation in dSIDM with (σ/m) ≤ 1 cm2g−1. On the contrary, models with (σ/m) = 10 cm2g−1produce puffier stellar distributions that are in tension with the observed size–mass relation. In addition, owing to the steeper central density profiles, the subkiloparsec circular velocities of isolated dwarfs when (σ/m) ≥ 0.1 cm2g−1are enhanced by about a factor of 2, which are still consistent with the kinematic measurements of Local Group dwarfs but in tension with the Hirotation curves of more massive field dwarfs. Meanwhile, for satellites of Milky Way–mass hosts, the median circular velocity profiles are marginally affected by dSIDM physics, but dSIDM may help promote the structural diversity of dwarf satellites. The number of satellites is slightly enhanced in dSIDM, but the differences are small compared with the large host-to-host variations. In conclusion, the dSIDM models with (σ/m) ≳ 0.1 cm2g−1,fdiss= 0.75 are in tension in massive dwarfs (Mhalo∼ 1011M) due to circular velocity constraints. However, models with lower effective cross sections (at this halo mass/velocity scale) are still viable and can produce nontrivial observable signatures.  more » « less
Award ID(s):
1752913 2108962 1910346 2107772 2108318
PAR ID:
10518313
Author(s) / Creator(s):
; ; ; ; ;
Publisher / Repository:
ApJ
Date Published:
Journal Name:
The Astrophysical Journal
Volume:
966
Issue:
1
ISSN:
0004-637X
Page Range / eLocation ID:
131
Format(s):
Medium: X
Sponsoring Org:
National Science Foundation
More Like this
  1. null (Ed.)
    ABSTRACT We present the first set of cosmological baryonic zoom-in simulations of galaxies including dissipative self-interacting dark matter (dSIDM). These simulations utilize the Feedback In Realistic Environments galaxy formation physics, but allow the dark matter to have dissipative self-interactions analogous to standard model forces, parametrized by the self-interaction cross-section per unit mass, (σ/m), and the dimensionless degree of dissipation, 0 < fdiss < 1. We survey this parameter space, including constant and velocity-dependent cross-sections, and focus on structural and kinematic properties of dwarf galaxies with $$M_{\rm halo} \sim 10^{10-11}{\, \rm M_\odot }$$ and $$M_{\ast } \sim 10^{5-8}{\, \rm M_\odot }$$. Central density profiles (parametrized as ρ ∝ rα) of simulated dwarfs become cuspy when $$(\sigma /m)_{\rm eff} \gtrsim 0.1\, {\rm cm^{2}\, g^{-1}}$$ (and fdiss = 0.5 as fiducial). The power-law slopes asymptote to α ≈ −1.5 in low-mass dwarfs independent of cross-section, which arises from a dark matter ‘cooling flow’. Through comparisons with dark matter only simulations, we find the profile in this regime is insensitive to the inclusion of baryons. However, when $$(\sigma /m)_{\rm eff} \ll 0.1\, {\rm cm^{2}\, g^{-1}}$$, baryonic effects can produce cored density profiles comparable to non-dissipative cold dark matter (CDM) runs but at smaller radii. Simulated galaxies with $$(\sigma /m) \gtrsim 10\, {\rm cm^{2}\, g^{-1}}$$ and the fiducial fdiss develop significant coherent rotation of dark matter, accompanied by halo deformation, but this is unlike the well-defined thin ‘dark discs’ often attributed to baryon-like dSIDM. The density profiles in this high cross-section model exhibit lower normalizations given the onset of halo deformation. For our surveyed dSIDM parameters, halo masses and galaxy stellar masses do not show appreciable difference from CDM, but dark matter kinematics and halo concentrations/shapes can differ. 
    more » « less
  2. Abstract The shape and orientation of dark matter (DM) halos are sensitive to the microphysics of the DM particles, yet in many mass models, the symmetry axes of the Milky Way’s DM halo are often assumed to be aligned with the symmetry axes of the stellar disk. This is well motivated for the inner DM halo, but not for the outer halo. We use zoomed-in cosmological baryonic simulations from the Latte suite of FIRE-2 Milky Way–mass galaxies to explore the evolution of the DM halo’s orientation with radius and time, with or without a major merger with a Large Magellanic Cloud analog, and when varying the DM model. In three of the four cold DM halos we examine, the orientation of the halo minor axis diverges from the stellar disk vector by more than 20° beyond about 30 galactocentric kpc, reaching a maximum of 30°–90°, depending on the individual halo’s formation history. In identical simulations using a model of self-interacting DM withσ= 1 cm2g−1, the halo remains aligned with the stellar disk out to ∼200–400 kpc. Interactions with massive satellites (M≳ 4 × 1010Mat pericenter;M≳ 3.3 × 1010Mat infall) affect the orientation of the halo significantly, aligning the halo’s major axis with the satellite galaxy from the disk to the virial radius. The relative orientation of the halo and disk beyond 30 kpc is a potential diagnostic of self-interacting DM, if the effects of massive satellites can be accounted for. 
    more » « less
  3. Abstract The abundance of faint dwarf galaxies is determined by the underlying population of low-mass dark matter (DM) halos and the efficiency of galaxy formation in these systems. Here, we quantify potential galaxy formation and DM constraints from future dwarf satellite galaxy surveys. We generate satellite populations using a suite of Milky Way (MW)–mass cosmological zoom-in simulations and an empirical galaxy–halo connection model, and assess sensitivity to galaxy formation and DM signals when marginalizing over galaxy–halo connection uncertainties. We find that a survey of all satellites around one MW-mass host can constrain a galaxy formation cutoff at peak virial masses of M 50 = 10 8 M at the 1σlevel; however, a tail toward low M 50 prevents a 2σmeasurement. In this scenario, combining hosts with differing bright satellite abundances significantly reduces uncertainties on M 50 at the 1σlevel, but the 2σtail toward low M 50 persists. We project that observations of one (two) complete satellite populations can constrain warm DM models withmWDM≈ 10 keV (20 keV). Subhalo mass function (SHMF) suppression can be constrained to ≈70%, 60%, and 50% that in cold dark matter (CDM) at peak virial masses of 108, 109, and 1010M, respectively; SHMF enhancement constraints are weaker (≈20, 4, and 2 times that in CDM, respectively) due to galaxy–halo connection degeneracies. These results motivate searches for faint dwarf galaxies beyond the MW and indicate that ongoing missions like Euclid and upcoming facilities including the Vera C. Rubin Observatory and Nancy Grace Roman Space Telescope will probe new galaxy formation and DM physics. 
    more » « less
  4. Abstract Isolated dwarf galaxies usually exhibit robust star formation but satellite dwarf galaxies are often devoid of young stars, even in Milky Way–mass groups. Dwarf galaxies thus offer an important laboratory of the environmental processes that cease star formation. We explore the balance of quiescent and star-forming galaxies (quenched fractions) for a sample of ∼400 satellite galaxies around 30 Local Volume hosts from the Exploration of Local VolumE Satellites (ELVES) Survey. We present quenched fractions as a function of satellite stellar mass, projected radius, and host halo mass, to conclude that overall, the quenched fractions are similar to the Milky Way, dropping below 50% at satelliteM*≈ 108M. We may see hints that quenching is less efficient at larger radii. Through comparison with the semianalytic modeling codeSatGen, we are also able to infer average quenching times as a function of satellite mass in host halo-mass bins. There is a gradual increase in quenching time with satellite stellar mass rather than the abrupt change from rapid to slow quenching that has been inferred for the Milky Way. We also generally infer longer average quenching times than recent hydrodynamical simulations. Our results are consistent with models that suggest a wide range of quenching times are possible via ram pressure stripping, depending on the clumpiness of the circumgalactic medium, the orbits of the satellites, and the degree of earlier preprocessing. 
    more » « less
  5. Abstract The circumgalactic medium (CGM) of star-forming dwarf galaxies plays a key role in regulating the galactic baryonic cycle. We investigate how susceptible the CGM of dwarf satellite galaxies is to ram pressure stripping in Milky Way–like environments. In a suite of hydrodynamical wind tunnel simulations, we model an intermediate-mass dwarf satellite galaxy (M*= 107.2M) with a multiphase interstellar medium (ISM;MISM= 107.9M) and CGM (MCGM,vir= 108.5M) along two first-infall orbits to more than 500 Myr past pericenter of a Milky Way–like host. The spatial resolution is ∼79 pc in the star-forming ISM and 316−632 pc in the CGM. Our simulations show that the dwarf satellite CGM removal is fast and effective: more than 95% of the CGM mass is ram pressure stripped within a few hundred megayears, even under a weak ram pressure orbit where the ISM stripping is negligible. The conditions for CGM survival are consistent with the analytical halo gas stripping predictions in McCarthy et al. We also find that including the satellite CGM does not effectively shield its galaxy, and therefore the ISM stripping rate is unaffected. Our results imply that a dwarf galaxy CGM is unlikely to be detected in satellite galaxies; and that the star formation of gaseous dwarf satellites is likely devoid of replenishment from a CGM. 
    more » « less