Abstract Habitat loss is a major threat to biodiversity, but the effects of habitat fragmentation are less clear. Examining drivers of key demographic processes, such as reproduction, will clarify species‐level responses to fragmentation and broader effects on biodiversity. Yet, understanding how fragmentation affects demography has been challenging due to the many ways landscapes are altered by co‐occurring habitat loss and fragmentation, coupled with the rarity of experiments to disentangle these effects.In a large, replicated fragmentation experiment with open savanna habitats surrounded by pine plantation forests, we tested the effects of inter‐patch connectivity, patch edge‐to‐area ratio, and within‐patch distance from an edge on plant reproductive output. Using five experimentally planted species of restoration interest—three wind‐pollinated grass species and two insect‐pollinated forb species—we measured plant flowering, pollination rate, and seed production.All plant species were more likely to flower and produce more flowering structures farther from the forest edge. Connectivity and distance from an edge, however, had no effect on the pollination rate (regardless of pollination mode). Despite no influence of fragmentation on pollination, plant seed production increased farther from the edge for four of five species, driven by the increase in flower production.Synthesis. Altogether, we demonstrate that plant reproductive output (seed production) is decreased by habitat fragmentation through edge effects on flowering. Our work provides evidence that an important contributor to plant demography, reproductive output, is altered by edge effects in fragmented patches. These species‐level impacts of fragmentation may provide insight into the mechanisms of fragmentation effects on community‐level changes in biodiversity.
more »
« less
Flower production decreases with warmer and more humid atmospheric conditions in a western Amazonian forest
Summary Climate models predict that everwet western Amazonian forests will face warmer and wetter atmospheric conditions, and increased cloud cover. It remains unclear how these changes will impact plant reproductive performance, such as flowering, which plays a central role in sustaining food webs and forest regeneration. Warmer and wetter nights may cause reduced flower production, via increased dark respiration rates or alteration in the reliability of flowering cue‐based processes. Additionally, more persistent cloud cover should reduce the amounts of solar irradiance, which could limit flower production.We tested whether interannual variation in flower production has changed in response to fluctuations in irradiance, rainfall, temperature, and relative humidity over 18 yrs in an everwet forest in Ecuador.Analyses of 184 plant species showed that flower production declined as nighttime temperature and relative humidity increased, suggesting that warmer nights and greater atmospheric water saturation negatively impacted reproduction. Species varied in their flowering responses to climatic variables but this variation was not explained by life form or phylogeny.Our results shed light on how plant communities will respond to climatic changes in this everwet region, in which the impacts of these changes have been poorly studied compared with more seasonal Neotropical areas.
more »
« less
- Award ID(s):
- 1754668
- PAR ID:
- 10518454
- Publisher / Repository:
- New Phytologist
- Date Published:
- Journal Name:
- New Phytologist
- Volume:
- 241
- Issue:
- 3
- ISSN:
- 0028-646X
- Page Range / eLocation ID:
- 1035 to 1046
- Format(s):
- Medium: X
- Sponsoring Org:
- National Science Foundation
More Like this
-
-
Abstract Atmospheric warming heats lakes, but the causes of variation among basins are poorly understood. Here, multi-decadal profiles of water temperatures, trophic state, and local climate from 345 temperate lakes are combined with data on lake geomorphology and watershed characteristics to identify controls of the relative rates of temperature change in water (WT) and air (AT) during summer. We show that differences in local climate (AT, wind speed, humidity, irradiance), land cover (forest, urban, agriculture), geomorphology (elevation, area/depth ratio), and water transparency explain >30% of the difference in rate of lake heating compared to that of the atmosphere. Importantly, the rate of lake heating slows as air warms (P < 0.001). Clear, cold, and deep lakes, especially at high elevation and in undisturbed catchments, are particularly responsive to changes in atmospheric temperature. We suggest that rates of surface water warming may decline relative to the atmosphere in a warmer future, particularly in sites already experiencing terrestrial development or eutrophication.more » « less
-
Abstract Flowering phenology can vary considerably even at fine spatial scales, potentially leading to temporal reproductive isolation among habitat patches. Climate change could alter flowering synchrony, and hence temporal isolation, if plants in different microhabitats vary in their phenological response to climate change. Despite the importance of temporal isolation in determining patterns of gene flow, and hence population genetic structure and local adaptation, little is known about how changes in climate affect temporal isolation within populations.Here, we use flowering phenology and floral abundance data of 50 subalpine plant species over 44 years to test whether temporal isolation between habitat patches is affected by spring temperature. For each species and year, we analysed temporal separation in peak flowering and flowering overlap between habitat patches separated by 5–950 m.Across our study species, warmer springs were associated with more temporal differentiation in flowering peaks among habitat patches, and less flowering overlap, increasing potential for temporal isolation within populations.Synthesis. By reducing opportunities for mating among plants in nearby habitat patches, our results suggest that warmer springs may reduce opportunities for gene flow within populations, and, consequently, the capacity of plant populations to adapt to environmental changes.more » « less
-
Summary Plant phenology, the timing of recurrent biological events, shows key and complex response to climate warming, with consequences for ecosystem functions and services. A key challenge for predicting plant phenology under future climates is to determine whether the phenological changes will persist with more intensive and long‐term warming.Here, we conducted a meta‐analysis of 103 experimental warming studies around the globe to investigate the responses of four phenophases – leaf‐out, first flowering, last flowering, and leaf coloring.We showed that warming advanced leaf‐out and flowering but delayed leaf coloring across herbaceous and woody plants. As the magnitude of warming increased, the response of most plant phenophases gradually leveled off for herbaceous plants, while phenology responded in proportion to warming in woody plants. We also found that the experimental effects of warming on plant phenology diminished over time across all phenophases. Specifically, the rate of changes in first flowering for herbaceous species, as well as leaf‐out and leaf coloring for woody species, decreased as the experimental duration extended.Together, these results suggest that the real‐world impact of global warming on plant phenology will diminish over time as temperatures continue to increase.more » « less
-
Abstract Both theory and prior studies predict that climate warming should increase attack rates by herbivores and pathogens on plants. However, past work has often assumed that variation in abiotic conditions other than temperature (e.g. precipitation) do not alter warming responses of plant damage by natural enemies. Studies over short time periods span low variation in weather, and studies over long time‐scales often neglect to account for fine‐scale weather conditions.Here, we used a 20+ year warming experiment to investigate if warming affects on herbivory and pathogen disease are dependent on variation in ambient weather observed over 3 years. We studied three common grass species in a subalpine meadow in the Colorado Rocky Mountains, USA. We visually estimated herbivory and disease every 2 weeks during the growing season and evaluated weather conditions during the previous 2‐ or 4‐week time interval (2‐week average air temperature, 2‐ and 4‐week cumulative precipitation) as predictors of the probability and amount of damage.Herbivore attack was 13% more likely and damage amount was 29% greater in warmed plots than controls across the focal species but warming treatment had little affect on plant disease. Herbivory presence and damage increased the most with experimental warming when preceded by wetter, rather than drier, fine‐scale weather, but preceding ambient temperature did not strongly interact with elevated warming to influence herbivory.Disease presence and amount increased, on average, with warmer weather and more precipitation regardless of warming.Synthesis. The effect of warming over reference climate on herbivore damage is dependent on and amplified by fine‐scale weather variation, suggesting more boom‐and‐bust damage dynamics with increasing climate variability. However, the mean effect of regional climate change is likely reduced monsoon rainfall, for which we predict a reduction in insect herbivore damage. Plant disease was generally unresponsive to warming, which may be a consequence of our coarse disease estimates that did not track specific pathogen species or guilds. The results point towards temperature as an important but not sufficient determinant and regulator of species interactions, where precipitation and other constraints may determine the affect of warming.more » « less
An official website of the United States government

