Tropical forests are well known for their high woody plant diversity. Processes occurring at early life stages are thought to play a critical role in maintaining this high diversity and shaping the composition of tropical tree communities. To evaluate hypothesized mechanisms promoting tropical tree species coexistence and influencing composition, we initiated a census of woody seedlings and small saplings in the permanent 50-ha Forest Dynamics Plot (FDP) on Barro Colorado Island (BCI), Panama. Situated in old-growth, lowland tropical moist forest, the BCI FDP was originally established in 1980 to monitor trees and shrubs ≥1 cm diameter at 1.3 m above ground (dbh) at ca. 5-yr intervals. However, critical data on the dynamics occurring at earlier life stages were initially lacking. Therefore, in 2001 we established a 1-m2 seedling plot in the center of every 5 x 5 m section of the BCI FDP. All freestanding woody individuals ≥20 cm tall and <1 cm dbh (hereafter referred to as seedlings) were tagged, mapped, measured, and identified to species in 19,313 1-m2 seedling plots. Because seedling dynamics are rapid, we censused these seedling plots every 1–2 years. Here we present data from the 14 censuses of these seedling plots conducted between the initial census in 2001 to the most recent census, in 2018. This data set includes nearly 1M observations of ~185,000 individuals of >400 tree, shrub, and liana species. These data will permit spatially-explicit analyses of seedling distributions, recruitment, growth, and survival for hundreds of woody plant species. In addition, the data presented here can be linked to openly-available, long-term data on the dynamics of trees and shrubs ≥1cm dbh in the BCI FDP, as well as existing data sets from the site on climate, canopy structure, phylogenetic relatedness, functional traits, soil nutrients, and topography. 
                        more » 
                        « less   
                    
                            
                            Seedling Dynamics Demography Data, from the Yasuní Forest Dynamics Plot, Ecuador, 2002-2019
                        
                    
    
            Seedling demography data are provided in annual censuses of 600 seedling plots in an equatorial, ever-wet rainforest in eastern Ecuador, in Yasuní National Park. This long-term study uses standardized methodology from the Smithsonian ForestGEO network of plots, and in particular coordination with similar studies in Luquillo, Puerto Rico, and Barro Colorado Island, Panama. We address hypotheses about the maintenance of forest diversity and long-term variation, and link our data to companion studies of flowering and fruiting phenology and sapling and adult dynamics in the Yasuní Forest Dynamics 50-ha Plot. The project is ongoing, and additional data will be added as they are processed. 
        more » 
        « less   
        
    
    
                            - PAR ID:
- 10518460
- Publisher / Repository:
- Environmental Data Initiative
- Date Published:
- Format(s):
- Medium: X
- Location:
- Environmental Data Initiative Repository
- Sponsoring Org:
- National Science Foundation
More Like this
- 
            
- 
            Abstract Tropical forests are well known for their high woody plant diversity. Processes occurring at early life stages are thought to play a critical role in maintaining this high diversity and shaping the composition of tropical tree communities. To evaluate hypothesized mechanisms promoting tropical tree species coexistence and influencing composition, we initiated a census of woody seedlings and small saplings in the permanent 50 ha Forest Dynamics Plot (FDP) on Barro Colorado Island (BCI), Panama. Situated in old‐growth, lowland tropical moist forest, the BCI FDP was originally established in 1980 to monitor trees and shrubs ≥1 cm diameter at 1.3 m above ground (dbh) at ca. 5‐year intervals. However, critical data on the dynamics occurring at earlier life stages were initially lacking. Therefore, in 2001 we established a 1‐m2seedling plot in the center of every 5 × 5 m section of the BCI FDP. All freestanding woody individuals ≥20 cm tall and <1 cm dbh (hereafter referred to as seedlings) were tagged, mapped, measured, and identified to species in 19,313 1‐m2seedling plots. Because seedling dynamics are rapid, we censused these seedling plots every 1–2 years. Here, we present data from the 14 censuses of these seedling plots conducted between the initial census in 2001 to the most recent census, in 2018. This data set includes nearly 1 M observations of ~185,000 individuals of >400 tree, shrub, and liana species. These data will permit spatially‐explicit analyses of seedling distributions, recruitment, growth, and survival for hundreds of woody plant species. In addition, the data presented here can be linked to openly‐available, long‐term data on the dynamics of trees and shrubs ≥1 cm dbh in the BCI FDP, as well as existing data sets from the site on climate, canopy structure, phylogenetic relatedness, functional traits, soil nutrients, and topography. This data set can be freely used for non‐commercial purposes; we request that users of these data cite this data paper in all publications resulting from the use of this data set.more » « less
- 
            Disturbance plays a key role in shaping forest composition and diversity. We used a community phylogeny and long-term forest dynamics data to investigate biotic and abiotic factors shaping tropical forest regeneration following both human and natural disturbance. Specifically, we examined shifts in seedling phylogenetic and functional (i.e., seed mass) community structure over a decade following a major hurricane in a human-impacted forest in Puerto Rico. Phylogenetic relatedness of the seedling community decreased in the first five years post-hurricane and then increased, largely driven by changes in the abundance of a common palm species. Functional structure (based on seed mass) became increasingly clustered through time, due to canopy closure causing small-seeded, light-demanding species to decline in abundance. Seedling neighbor density and phylogenetic relatedness negatively affected seedling survival, which likely acted to reduce phylogenetic relatedness within seedling plots. Across the study site, areas impacted in the past by high-intensity land use had lower or similar phylogenetic relatedness of seedling communities than low-intensity past land use areas, reflecting interactive effects of human and natural disturbance. Our study demonstrates how phylogenetic and functional information offer insights into the role of biotic and abiotic factors structuring forest recovery following disturbance.more » « less
- 
            We present highlights derived from 36 years of weekly observations of flower and seed production and 25 years of annual observations of seedling dynamics at Barro Colorado Island (BCI), Panama. Highlights concern levels and causes of spatial, temporal, and interspecific variation in flower production, seed production, seed dispersal, and seedling recruitment, growth, and survival as well as the consequences for plant regeneration and diversity. Full tree life cycles are assembled by combining seed production, seedling dynamics, and observations of larger plants from the 50-ha Forest Dynamics Plot and are used to evaluate the costs of dioecy, lifetime insights from functional traits, and interspecific variation in the impact of lianas among host tree species. A variety of results demonstrate the importance of long-term observations to understand forest dynamics and responses to rising atmospheric carbon dioxide concentrations and a changing climate.more » « less
- 
            Forest restoration is increasingly heralded as a global strategy to conserve biodiversity and mitigate climate change, yet long-term studies that compare the effects of different restoration strategies on tree recruit demographics are lacking. We measured tree recruit survival and growth annually in three restoration treatments—natural regeneration, applied nucleation and tree plantations—replicated at 13 sites in southern Costa Rica—and evaluated the changes over a decade. Early-successional seedlings had 14% higher survival probability in the applied nucleation than natural regeneration treatments. Early-successional sapling growth rates were initially 227% faster in natural regeneration and 127% faster in applied nucleation than plantation plots but converged across restoration treatments over time. Later-successional seedling and sapling survival were similar across treatments but later-successional sapling growth rates were 39% faster in applied nucleation than in plantation treatments. Results indicate that applied nucleation was equally or more effective in enhancing survival and growth of naturally recruited trees than the more resource-intensive plantation treatment, highlighting its promise as a restoration strategy. Finally, tree recruit dynamics changed quickly over the 10-year period, underscoring the importance of multi-year studies to compare restoration interventions and guide ambitious forest restoration efforts planned for the coming decades. This article is part of the theme issue ‘Understanding forest landscape restoration: reinforcing scientific foundations for the UN Decade on Ecosystem Restoration’.more » « less
 An official website of the United States government
An official website of the United States government 
				
			 
					 
					
