skip to main content
US FlagAn official website of the United States government
dot gov icon
Official websites use .gov
A .gov website belongs to an official government organization in the United States.
https lock icon
Secure .gov websites use HTTPS
A lock ( lock ) or https:// means you've safely connected to the .gov website. Share sensitive information only on official, secure websites.


Title: Widespread ciliate and dinoflagellate mixotrophy may contribute to ecosystem resilience in a subarctic sea: the northern Gulf of Alaska
Mixotrophy among ciliates and dinoflagellates in the northern Gulf of Alaska (NGA) was widespread during spring and summer, with mixotrophs contributing a median of 38 to 61% of total ciliate plus dinoflagellate biomass depending on season and year. The proportional contribution of mixotrophs was higher during a heatwave year (2019) than during a year of average temperatures (2018). The most common mixotrophic ciliates included Mesodinium spp. and several of 8 observed Strombidium species, while for dinoflagellates, the most common mixotrophs were Gymnodinium-like cells and Tripos (formerlyCeratium) spp. Onshore-offshore distribution gradients were seen mainly in summer when elevated freshwater inputs create a horizontal salinity gradient. A nearshore mixotroph assemblage consisted of nutritionally related Mesodinium spp. and dinoflagellate Dinophysis, as well as Tripos spp., while an offshore assemblage included Tontonia-like ciliates and dinoflagellates including Gymnodinium-like cells and Torodinium robustum. An 11 yr time series with lower taxonomic resolution revealed seasonality in some taxa and showed near-complete loss of Mesodinium spp. and Tontonia-like species during the longer 2014-2016 North Pacific marine heatwave. The constellation of nutritional strategies represented by NGA mixotrophs may be an important component of lower trophic level resilience to marine heatwaves, while high mixotroph contribution to ciliate plus dinoflagellate biomass may increase trophic transfer efficiency and contribute to high fisheries yields.  more » « less
Award ID(s):
2322806 1656070
PAR ID:
10519483
Author(s) / Creator(s):
; ;
Publisher / Repository:
Inter-Research
Date Published:
Journal Name:
Aquatic Microbial Ecology
Edition / Version:
1
Volume:
90
ISSN:
0948-3055
Page Range / eLocation ID:
1 to 21
Subject(s) / Keyword(s):
mixotrophy, seasonality, heatwave, microzooplankton
Format(s):
Medium: X Other: pdf
Sponsoring Org:
National Science Foundation
More Like this
  1. Abstract In sunlit waters, significant predation is performed by unicellular, phagotrophic mixotrophs, that is, predators that also possess plastids. The success of a mixotrophic lifestyle will depend in part on how well mixotrophs acquire prey relative to specialized heterotrophs. Likewise, consequences of mixotrophy for productivity and element cycling will depend on the rate and efficiency at which mixotrophs consume prey biomass relative to heterotrophs. However, trait differences between mixotrophs and heterotrophs are not well characterized. In addition, cell size of mixotrophs varies widely, and constitutive mixotrophs include small flagellates deriving from diverse taxa, while larger species are primarily dinoflagellates. To determine whether similar constraints apply to phagotrophs across this broad range of size and taxa, we compiled 83 measurements of flagellate functional responses and compared maximum clearance rates (Cmax) and maximum ingestion rates (Imax) between trophic modes. We found that the average mixotroph has a 3.7‐fold lowerCmaxand 7.8‐fold lowerImaxthan the average heterotroph, after controlling for cell size. The smaller penalty forCmaxsuggests that relative fitness of mixotrophs will be enhanced under dilute prey concentrations that are common in pelagic ecosystems. We also find that growth efficiency is greater for mixotrophs and for flagellates with lowerCmax, indicating a spectrum of trophic strategies that may be driven by phototrophy vs. phagotrophy allocation as well as fast vs. slow metabolic variation. Allometric scaling shows thatImaxis constrained by a common relationship among dinoflagellates and other taxa, but dinoflagellates achieve a greater volume‐specificCmax. These results should aid in interpreting protistan communities and modeling mixotrophy. 
    more » « less
  2. Abstract Plankton form the foundation of marine food webs, playing fundamental roles in mediating trophic transfer and the movement of organic matter. Increasing ocean temperatures have been documented to drive evolution of plankton, resulting in changes to metabolic traits that can affect trophic transfer. Despite this, there are few direct tests of the effects of such evolution on predator–prey interactions. Here, we used two thermally adapted strains of the marine mixotroph (organism that combines both heterotrophy and autotrophy to obtain energy) Ochromonas as prey and the generalist dinoflagellate predator Oxyrrhis marina to quantify how evolved traits of mixotrophs to hot and cold temperatures affects trophic transfer. Evolution to hot temperatures reduced the overall ingestion rates of both mixotroph strains, consequently weakening predator–prey interactions. We found variability in prey palatability and predator performance with prey thermal adaptation and between strains. Further, we quantified how ambient temperature affects predator grazing on mixotrophs thermally adapted to the same conditions. Increasing ambient temperatures led to increased ingestion rates but declines in clearance rates. Our results for individual, pairwise trophic interactions show how climate change can alter the dynamics of planktonic food webs with implications for carbon cycling in upper ocean ecosystems. 
    more » « less
  3. null (Ed.)
    Marine microeukaryotes play a fundamental role in biogeochemical cycling through the transfer of energy to higher trophic levels and vertical carbon transport. Despite their global importance, microeukaryote physiology, nutrient metabolism and contributions to carbon cycling across offshore ecosystems are poorly characterized. Here, we observed the prevalence of dinoflagellates along a 4,600-km meridional transect extending across the central Pacific Ocean, where oligotrophic gyres meet equatorial upwelling waters rich in macronutrients yet low in dissolved iron. A combined multi-omics and geochemical analysis provided a window into dinoflagellate metabolism across the transect, indicating a continuous taxonomic dinoflagellate community that shifted its functional transcriptome and proteome as it extended from the euphotic to the mesopelagic zone. In euphotic waters, multi-omics data suggested that a combination of trophic modes were utilized, while mesopelagic metabolism was marked by cytoskeletal investments and nutrient recycling. Rearrangement in nutrient metabolism was evident in response to variable nitrogen and iron regimes across the gradient, with no associated change in community assemblage. Total dinoflagellate proteins scaled with particulate carbon export, with both elevated in equatorial waters, suggesting a link between dinoflagellate abundance and total carbon flux. Dinoflagellates employ numerous metabolic strategies that enable broad occupation of central Pacific ecosystems and play a dual role in carbon transformation through both photosynthetic fixation in the euphotic zone and remineralization in the mesopelagic zone. 
    more » « less
  4. Aquatic ecologists are integrating mixotrophic plankton – here defined as microorganisms with photosynthetic and phagotrophic capacity – into their understanding of marine food webs and biogeochemical cycles. Understanding mixotroph temporal and spatial distributions, as well as the environmental conditions under which they flourish, is imperative to understanding their impact on trophic transfer and biogeochemical cycling. Mixotrophs are hypothesized to outcompete strict photoautotrophs and heterotrophs when either light or nutrients are limiting, but testing this hypothesis has been hindered by the challenge of identifying and quantifying mixotrophs in the field. Using field observations from a multi-decadal northern North Atlantic dataset, we calculated the proportion of organisms that are considered mixotrophs within individual microplankton samples. We also calculated a “trophic index” that represents the relative proportions of photoautotrophs (phytoplankton), mixotrophs, and heterotrophs (microzooplankton) in each sample. We found that the proportion of mixotrophs was positively correlated with temperature, and negatively with either light or inorganic nutrient concentration. This proportion was highest during summertime thermal stratification and nutrient limitation, and lowest during the North Atlantic spring bloom period. Between 1958 and 2015, changes in the proportion of mixotrophs coincided with changes in the Atlantic Multi-decadal Oscillation (AMO), was highest when the AMO was positive, and showed a significant uninterrupted increase in offshore regions from 1992-2015. This study provides an empirical foundation for future experimental, time series, and modeling studies of aquatic mixotrophs. 
    more » « less
  5. Abstract Marine heatwave (MHW) events have led to acute decreases in primary production and phytoplankton biomass in the surface ocean, particularly at the mid latitudes. In the Northeast Pacific, these anomalous events have occasionally encroached onto the Oregon shelf during the ecologically important summer upwelling season. Increased temperatures reduce the density of offshore waters, and as a MHW is present offshore, coincident downwelling or relaxation may transport warmer waters inshore. As an event persists, new upwelling‐driven blooms may be prevented from extending further offshore. This work focuses on MHWs and coincident events that occurred off Oregon during the summers of 2015–2023. In late summer 2015 and 2019, both documented MHW years, coastal phytoplankton biomass extended on average 6 and 9 km offshore of the shelf break along the Newport Hydrographic Line, respectively. During years not influenced by anomalous warming, coastal biomass extended over 34 km offshore of the shelf break. Reduced biomass also occurs with reduced upwelling transport and nutrient flux during these anomalous warm periods. However, the enhanced front associated with a MHW aids in the compression of phytoplankton closer to shore. Over shorter events, heatwaves propagating far inshore also coincide with reduced chlorophyllaand sea‐surface density at select cross‐shelf locations, further supporting a physical displacement mechanism. Paired with the physiological impacts on communities, heatwave‐reinforced physical confinement of blooms over the inner‐shelf may have a measurable effect on the gravitational flux and alongshore transport of particulate organic carbon. 
    more » « less